Extracts predictions from a fitted model. For
estimate_infections() returns
predicted reported cases, for estimate_secondary() returns predicted
secondary observations. For estimate_truncation() returns reconstructed
observations adjusted for truncation.
Usage
get_predictions(object, ...)
# S3 method for class 'estimate_infections'
get_predictions(
object,
format = c("summary", "sample", "quantile"),
CrIs = c(0.2, 0.5, 0.9),
quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
...
)
# S3 method for class 'estimate_secondary'
get_predictions(
object,
format = c("summary", "sample", "quantile"),
CrIs = c(0.2, 0.5, 0.9),
quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
...
)
# S3 method for class 'forecast_infections'
get_predictions(
object,
format = c("summary", "sample", "quantile"),
CrIs = c(0.2, 0.5, 0.9),
quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
...
)
# S3 method for class 'forecast_secondary'
get_predictions(
object,
format = c("summary", "sample", "quantile"),
CrIs = c(0.2, 0.5, 0.9),
quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
...
)
# S3 method for class 'estimate_truncation'
get_predictions(
object,
format = c("summary", "sample", "quantile"),
CrIs = c(0.2, 0.5, 0.9),
quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
...
)Arguments
- object
A fitted model object (e.g., from
estimate_infections(),estimate_secondary(), orestimate_truncation())- ...
Additional arguments (currently unused)
- format
Character string specifying the output format:
"summary"(default): summary statistics (mean, sd, median, CrIs)"sample": raw posterior samples forscoringutils::as_forecast_sample()"quantile": quantile predictions forscoringutils::as_forecast_quantile()
- CrIs
Numeric vector of credible intervals to return. Defaults to c(0.2, 0.5, 0.9). Only used when
format = "summary".- quantiles
Numeric vector of quantile levels to return. Defaults to c(0.05, 0.25, 0.5, 0.75, 0.95). Only used when
format = "quantile".
Value
A data.table with columns depending on format:
format = "summary": date, mean, sd, median, and credible intervalsformat = "sample": forecast_date, date, horizon, sample, predictedformat = "quantile": forecast_date, date, horizon, quantile_level, predicted
Examples
if (FALSE) { # \dontrun{
# After fitting a model
# Get summary predictions (default)
predictions <- get_predictions(fit)
# Get sample-level predictions for scoringutils
samples <- get_predictions(fit, format = "sample")
# Get quantile predictions for scoringutils
quantiles <- get_predictions(fit, format = "quantile")
} # }
