Defines a list specifying the arguments passed to underlying stan
backend functions via
stan_sampling_opts()
and stan_vb_opts()
. Custom
settings can be supplied which override the defaults.
Arguments
- object
Stan model object. By default uses the compiled package default if using the "rstan" backend, and the default model obtained using
epinow2_cmdstan_model()
if using the "cmdstanr" backend.- samples
Numeric, defaults to 2000. Number of posterior samples.
- method
A character string, defaulting to sampling. Currently supports MCMC sampling ("sampling") or approximate posterior sampling via variational inference ("vb") and, as experimental features if the "cmdstanr" backend is used, approximate posterior sampling with the laplace algorithm ("laplace") or pathfinder ("pathfinder").
- backend
Character string indicating the backend to use for fitting stan models. Supported arguments are "rstan" (default) or "cmdstanr".
- return_fit
Logical, defaults to TRUE. Should the fit stan model be returned.
- ...
Additional parameters to pass to underlying option functions,
stan_sampling_opts()
orstan_vb_opts()
, depending on the method
Examples
# using default of [rstan::sampling()]
stan_opts(samples = 1000)
#> $backend
#> [1] "rstan"
#>
#> $object
#> NULL
#>
#> $method
#> [1] "sampling"
#>
#> $chains
#> [1] 4
#>
#> $save_warmup
#> [1] FALSE
#>
#> $seed
#> [1] 71983401
#>
#> $future
#> [1] FALSE
#>
#> $max_execution_time
#> [1] Inf
#>
#> $cores
#> [1] 1
#>
#> $warmup
#> [1] 250
#>
#> $control
#> $control$adapt_delta
#> [1] 0.9
#>
#> $control$max_treedepth
#> [1] 12
#>
#>
#> $iter
#> [1] 500
#>
#> $return_fit
#> [1] TRUE
#>
#> attr(,"class")
#> [1] "stan_opts" "list"
# using vb
stan_opts(method = "vb")
#> $backend
#> [1] "rstan"
#>
#> $object
#> NULL
#>
#> $method
#> [1] "vb"
#>
#> $trials
#> [1] 10
#>
#> $iter
#> [1] 10000
#>
#> $output_samples
#> [1] 2000
#>
#> $return_fit
#> [1] TRUE
#>
#> attr(,"class")
#> [1] "stan_opts" "list"