EpiNow2 Stan Functions
Loading...
Searching...
No Matches
observation_model.stan
Go to the documentation of this file.
1/**
2 * Apply day of the week effect to reports
3 *
4 * This function applies a day of the week effect to a vector of reports.
5 *
6 * @param reports Vector of reports to be adjusted.
7 * @param day_of_week Array of integers representing the day of the week for
8 * each report.
9 * @param effect Vector of day of week effects.
10 *
11 * @return A vector of reports adjusted for day of the week effects.
12 *
13 * @ingroup observation_model
14 */
15vector day_of_week_effect(vector reports, array[] int day_of_week,
16 vector effect) {
17 int wl = num_elements(effect);
18 vector[wl] scaled_effect = wl * effect;
19 return reports .* scaled_effect[day_of_week];
20}
21
22/**
23 * Scale observations by fraction reported
24 *
25 * This function scales a vector of reports by a fraction observed.
26 *
27 * @param reports Vector of reports to be scaled.
28 * @param frac_obs Real value representing the fraction observed.
29 *
30 * @return A vector of scaled reports.
31 *
32 * @ingroup observation_model
33 */
34vector scale_obs(vector reports, real frac_obs) {
35 int t = num_elements(reports);
36 vector[t] scaled_reports;
37 scaled_reports = reports * frac_obs;
38 return(scaled_reports);
39}
40
41/**
42 * Truncate observed data by a truncation distribution
43 *
44 * This function truncates a vector of reports based on a truncation
45 * distribution.
46 *
47 * @param reports Vector of reports to be truncated.
48 * @param trunc_rev_cmf Vector representing the reverse cumulative mass function
49 * of the truncation distribution.
50 * @param reconstruct Integer flag indicating whether to reconstruct (1) or
51 * truncate (0) the data.
52 *
53 * @return A vector of truncated reports.
54 *
55 * @ingroup observation_model
56 */
57vector truncate_obs(vector reports, vector trunc_rev_cmf, int reconstruct) {
58 int t = num_elements(reports);
59 int trunc_max = num_elements(trunc_rev_cmf);
60 vector[t] trunc_reports = reports;
61 // Calculate cmf of truncation delay
62 int joint_max = min(t, trunc_max);
63 int first_t = t - joint_max + 1;
64 int first_trunc = trunc_max - joint_max + 1;
65
66 // Apply cdf of truncation delay to truncation max last entries in reports
67 if (reconstruct) {
68 trunc_reports[first_t:t] ./= trunc_rev_cmf[first_trunc:trunc_max];
69 } else {
70 trunc_reports[first_t:t] .*= trunc_rev_cmf[first_trunc:trunc_max];
71 }
72 return(trunc_reports);
73}
74
75/**
76 * Update log density for truncation distribution priors
77 *
78 * This function updates the log density for truncation distribution priors.
79 *
80 * @param truncation_mean Array of real values for truncation mean.
81 * @param truncation_sd Array of real values for truncation standard deviation.
82 * @param trunc_mean_mean Array of real values for mean of truncation mean
83 * prior.
84 * @param trunc_mean_sd Array of real values for standard deviation of
85 * truncation mean prior.
86 * @param trunc_sd_mean Array of real values for mean of truncation standard
87 * deviation prior.
88 * @param trunc_sd_sd Array of real values for standard deviation of truncation
89 * standard deviation prior.
90 *
91 * @ingroup observation_model
92 */
93void truncation_lp(array[] real truncation_mean, array[] real truncation_sd,
94 array[] real trunc_mean_mean, array[] real trunc_mean_sd,
95 array[] real trunc_sd_mean, array[] real trunc_sd_sd) {
96 int truncation = num_elements(truncation_mean);
97 if (truncation) {
98 if (trunc_mean_sd[1] > 0) {
99 // uncertain mean
100 truncation_mean ~ normal(trunc_mean_mean, trunc_mean_sd);
101 }
102 if (trunc_sd_sd[1] > 0) {
103 // uncertain sd
104 truncation_sd ~ normal(trunc_sd_mean, trunc_sd_sd);
105 }
106 }
107}
108
109/**
110 * Update log density for reported cases
111 *
112 * This function updates the log density for reported cases based on the
113 * specified model type.
114 *
115 * @param cases Array of integer observed cases.
116 * @param case_times Array of integer time indices for observed cases.
117 * @param reports Vector of expected reports.
118 * @param dispersion Real values for reporting overdispersion.
119 * @param model_type Integer indicating the model type (0 for Poisson, >0 for
120 * Negative Binomial).
121 * @param weight Real value for weighting the log density contribution.
122 *
123 * @ingroup observation_model
124 */
125void report_lp(array[] int cases, array[] int case_times, vector reports,
126 real dispersion, int model_type, real weight) {
127 int n = num_elements(case_times); // number of observations
128 vector[n] obs_reports = reports[case_times]; // reports at observation time
129 if (model_type) {
130 real phi = inv_square(dispersion);
131 if (weight == 1) {
132 cases ~ neg_binomial_2(obs_reports, phi);
133 } else {
134 target += neg_binomial_2_lpmf(
135 cases | obs_reports, phi
136 ) * weight;
137 }
138 } else {
139 if (weight == 1) {
140 cases ~ poisson(obs_reports);
141 } else {
142 target += poisson_lpmf(cases | obs_reports) * weight;
143 }
144 }
145}
146
147/**
148 * Accumulate reports according to a binary flag at each time point
149 *
150 * This function accumulates reports according to a binary flag at each time
151 * point.
152 *
153 * @param reports Vector of expected reports.
154 * @param accumulate Array of integers indicating, for each time point, whether
155 * to accumulate or not.
156 *
157 * @return A vector of accumulated reports.
158 *
159 * @ingroup observation_model
160 */
161vector accumulate_reports(vector reports, array[] int accumulate) {
162 int ot_h = num_elements(reports); // number of reporting time points modelled
163 vector[ot_h] accumulated_reports = reports;
164 for (i in 1:(ot_h - 1)) {
165 if (accumulate[i]) { // first observation gets ignored when accumulating
166 accumulated_reports[i + 1] += accumulated_reports[i];
167 }
168 }
169 return accumulated_reports;
170}
171
172/**
173 * Calculate log likelihood for reported cases
174 *
175 * This function calculates the log likelihood for reported cases based on the
176 * specified model type.
177 *
178 * @param cases Array of integer observed cases.
179 * @param reports Vector of expected reports.
180 * @param dispersion Array of real values for reporting overdispersion.
181 * @param model_type Integer indicating the model type (0 for Poisson, >0 for
182 * Negative Binomial).
183 * @param weight Real value for weighting the log likelihood contribution.
184 *
185 * @return A vector of log likelihoods for each time point.
186 *
187 * @ingroup observation_model
188 */
189vector report_log_lik(array[] int cases, vector reports,
190 real dispersion, int model_type, real weight) {
191 int t = num_elements(reports);
192 vector[t] log_lik;
193
194 // defer to poisson if phi is large, to avoid overflow
195 if (model_type == 0) {
196 for (i in 1:t) {
197 log_lik[i] = poisson_lpmf(cases[i] | reports[i]) * weight;
198 }
199 } else {
200 real phi = inv_square(dispersion);
201 for (i in 1:t) {
202 log_lik[i] = neg_binomial_2_lpmf(
203 cases[i] | reports[i], dispersion
204 ) * weight;
205 }
206 }
207 return(log_lik);
208}
209
210
211/**
212 * Custom safe version of the negative binomial sampler
213 *
214 * This function generates random samples of the negative binomial distribution
215 * whilst avoiding numerical overflows. In particular:
216 * - if the mu parameter is very small it always returns 0
217 * - if the phi parameter is large it returns a sample from a Poisosn
218 * distribution
219 * - if the gamma rate of the gamma-Poisson mixture used for simulating from the
220 * distribution is very large, it returns 1e8
221 * - in all other cases it returns a sample from the negative binomial
222 * distribution
223 *
224 * @param mu Real value for mean mu.
225 * @param phi Real value for phi.
226 *
227 * @return A random sample
228 *
229 * @ingroup handlers_and_helpers
230 */
231int neg_binomial_2_safe_rng(real mu, real phi) {
232 if (mu < 1e-8) {
233 return(0);
234 } else if (phi > 1e4) {
235 return(poisson_rng(mu > 1e8 ? 1e8 : mu));
236 } else {
237 real gamma_rate = gamma_rng(phi, phi / mu);
238 return(poisson_rng(gamma_rate > 1e8 ? 1e8 : gamma_rate));
239 }
240}
241
242/**
243 * Generate random samples of reported cases
244 *
245 * This function generates random samples of reported cases based on the
246 * specified model type.
247 *
248 * @param reports Vector of expected reports.
249 * @param dispersion Real value for reporting overdispersion.
250 * @param model_type Integer indicating the model type (0 for Poisson, >0 for
251 * Negative Binomial).
252 *
253 * @return An array of integer sampled reports.
254 *
255 * @ingroup observation_model
256 */
257array[] int report_rng(vector reports, real dispersion, int model_type) {
258 int t = num_elements(reports);
259 array[t] int sampled_reports;
260 real phi = 1e5;
261 if (model_type) {
262 phi = inv_square(dispersion);
263 }
264
265 for (s in 1:t) {
266 sampled_reports[s] = neg_binomial_2_safe_rng(reports[s], phi);
267 }
268 return(sampled_reports);
269}
int neg_binomial_2_safe_rng(real mu, real phi)
array[] int report_rng(vector reports, real dispersion, int model_type)
vector truncate_obs(vector reports, vector trunc_rev_cmf, int reconstruct)
void truncation_lp(array[] real truncation_mean, array[] real truncation_sd, array[] real trunc_mean_mean, array[] real trunc_mean_sd, array[] real trunc_sd_mean, array[] real trunc_sd_sd)
vector report_log_lik(array[] int cases, vector reports, real dispersion, int model_type, real weight)
vector scale_obs(vector reports, real frac_obs)
void report_lp(array[] int cases, array[] int case_times, vector reports, real dispersion, int model_type, real weight)
vector accumulate_reports(vector reports, array[] int accumulate)
vector day_of_week_effect(vector reports, array[] int day_of_week, vector effect)