EpiNow2 Stan Functions
Loading...
Searching...
No Matches
pmfs.stan
Go to the documentation of this file.
1/**
2 * Probability Mass Function (PMF) Utilities
3 *
4 * This file contains functions for creating and manipulating probability mass
5 * functions, particularly for discretizing continuous distributions for use in
6 * delay modeling.
7 *
8 * @ingroup pmf_handlers
9 */
10
11/**
12 * Discretise a continuous distribution
13 *
14 * This function discretizes continuous distributions (lognormal or gamma) to create
15 * a probability mass function over discrete time points (days).
16 * Adapted from https://github.com/epiforecasts/epinowcast
17 * (MIT License, copyright: epinowcast authors)
18 *
19 * @param params Vector of distribution parameters ([mu, sigma] for lognormal or [shape, rate] for gamma)
20 * @param n Number of days to calculate PMF for
21 * @param dist Distribution type (0: lognormal, 1: gamma)
22 * @return A vector of length n containing the discretized probability mass function
23 *
24 * @ingroup pmf_handlers
25 */
26vector discretised_pmf(vector params, int n, int dist) {
27 vector[n] lpmf;
28 vector[n] upper_lcdf;
29 if (dist == 0) {
30 for (i in 1:n) {
31 upper_lcdf[i] = lognormal_lcdf(i | params[1], params[2]);
32 }
33 } else if (dist == 1) {
34 for (i in 1:n) {
35 upper_lcdf[i] = gamma_lcdf(i | params[1], params[2]);
36 }
37 } else {
38 reject("Unknown distribution function provided.");
39 }
40 // discretise
41 if (n > 1) {
42 lpmf[1] = upper_lcdf[1];
43 lpmf[2] = upper_lcdf[2];
44 if (n > 2) {
45 lpmf[3:n] = log_diff_exp(upper_lcdf[3:n], upper_lcdf[1:(n - 2)]);
46 }
47 // normalize
48 lpmf = lpmf - log_sum_exp(upper_lcdf[(n - 1):n]);
49 } else {
50 lpmf[1] = 0;
51 }
52 return(exp(lpmf));
53}
vector discretised_pmf(vector params, int n, int dist)
Definition pmfs.stan:26