Iteratively Forecast
iterative_rt_forecast.Rd
Iteratively Forecast
Usage
iterative_rt_forecast(
rts,
model = NULL,
horizon = 7,
samples = 1000,
timeout = 30,
bound_rt = TRUE,
min_points = 3
)
Arguments
- rts
A dataframe of containing two variables
rt
anddate
withrt
being numeric anddate
being a date.- model
A model object in the format of
bsts_model
orfable_model
. See the corresponding help files for details.- horizon
Numeric, the time horizon over which to predict.
- samples
Numeric, number of samples to take.
- timeout
Numeric, timeout of model fitting in seconds. Defaults to 30 seconds.
- bound_rt
Logical, defaults to
TRUE
. Should Rt values be bounded to be greater than or equal to 0.- min_points
Numeric, defaults to 3. The minimum number of time points at which to begin iteratively evaluating the forecast.
Examples
if (FALSE) {
iterative_rt_forecast(EpiSoon::example_obs_rts,
model = function(...) {
EpiSoon::bsts_model(
model =
function(ss, y) {
bsts::AddSemilocalLinearTrend(ss, y = y)
}, ...
)
},
horizon = 7, samples = 10, min_points = 4
) -> tmp
}