Predict cases for Rts based on observed data
predict_current_cases.Rd
Predict cases for Rts based on observed data
Arguments
- cases
A dataframe containing
date
andcases
variables- rts
A dataframe of containing two variables
rt
anddate
withrt
being numeric anddate
being a date.- serial_interval
A numeric vector describing the probability distribution the serial interval. See
EpiNow::covid_serial_interval
for an example of the format.- rdist
A function to be used to sample the number of cases. Must take two arguments with the first specfying the number of samples and the second the mean. Defaults to
rpois
if not supplied
Examples
purrr::map_dfr(1:100, ~ predict_current_cases(
cases = EpiSoon::example_obs_cases,
rts = EpiSoon::example_obs_rts,
serial_interval = EpiSoon::example_serial_interval
)) %>%
dplyr::group_by(date) %>%
dplyr::summarise(cases = mean(cases))
#> # A tibble: 22 × 2
#> date cases
#> <date> <dbl>
#> 1 2020-03-01 34.4
#> 2 2020-03-02 41.3
#> 3 2020-03-03 51.0
#> 4 2020-03-04 59.2
#> 5 2020-03-05 70.7
#> 6 2020-03-06 80.4
#> 7 2020-03-07 94.2
#> 8 2020-03-08 110.
#> 9 2020-03-09 127.
#> 10 2020-03-10 151.
#> # … with 12 more rows