Provides a user friendly interface around package functionality to produce a nowcast from observed preprocessed data, a reference model, and a report model.
Usage
epinowcast(
pobs,
reference_effects = epinowcast::enw_formula(pobs$metareference[[1]]),
report_effects = epinowcast::enw_formula(pobs$metareport[[1]]),
priors = epinowcast::enw_priors(),
distribution = "lognormal",
model = epinowcast::enw_model(),
as_data_list = epinowcast::enw_as_data_list,
inits = epinowcast::enw_inits,
fit = epinowcast::enw_sample,
nowcast = TRUE,
pp = FALSE,
likelihood = TRUE,
debug = FALSE,
output_loglik = FALSE,
...
)
Arguments
- pobs
Output from
enw_preprocess_data()
.- reference_effects
A list of fixed and random design matrices defining the date of reference model. Defaults to
enw_formula()
which is an intercept only model.- report_effects
A list of fixed and random design matrices defining the date of reports model. Defaults to
enw_formula()
which is an intercept only model.- priors
DESCRIPTION.
- distribution
Character string indicating the type of distribution to use for reference date effects. The default is to use a lognormal but other options available include: gamma distributed ("gamma").
- model
A
cmdstanr
model object as loaded byenw_model()
.- as_data_list
PARAM_DESCRIPTION
- inits
PARAM DESCRIPTION
- fit
PARAM DESCRIPTION
- nowcast
Logical, defaults to
TRUE
. Should a nowcast be made using posterior predictions of the unobserved future reported notifications.- pp
Logical, defaults to
FALSE
. Should posterior predictions be made for observed data. Useful for evaluating the performance of the model.- likelihood
Logical, defaults to
TRUE
. Should the likelihood be included in the model- debug
Logical, defaults to
FALSE
. Should within model debug information be returned.- output_loglik
Logical, defaults to
FALSE
. Should the log-likelihood be output. Disabling this will speed up fitting if evaluating the model fit is not required.- ...
Additional arguments passed to
enw_sample()
.
See also
Other epinowcast:
plot.epinowcast()
,
summary.epinowcast()