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Abstract

TODO: Summarise the project in a structured abstract (background, methods, results and
conclusions)

Introduction

COVID-19 hospitalisations in Germany are released by date of positive test rather than by date of admission.
This has some advantages when they are used as a tool for surveillance as these data are closer to the date
of infection and so easier to link to underlying transmission dynamics and public health interventions.
Unfortunately, however, when released in this way the latest data are right-censored meaning that final
hospitalisations for a given day are initially underreported. This issue is often found in data sets used for
the surveillance of infectious diseases and can lead to delayed or biased decision making. Fortunately, when
data from a series of days is available we can estimate the level of censoring and provide estimates for the
truncated hospitalisations adjusted for truncation with appropriate uncertainty. This is usually known as a
nowcast.

TODO: What else has been done for nowcasting

In this work, we aim to evaluate a series of novel semi-parametric nowcasting model formulations in real-time
and provide an example workflow to allow others to do similarly using German COVID-19 hospitalisations
by date of positive test at the national level both overall and by age group, and at the state level. This
project is part of a wider collaboration assessing a range of nowcasting methods whilst providing an ensemble
nowcast of COVID-19 Hospital admissions in Germany by date of positive test. This ensemble should be
used for any policy-related work rather than the nowcasts provided in this repository. See here for more on
this nowcasting collaboration.
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Methods

Data

TODO: Data source and processing details

Models

In the following sections we provide methodological and implementation details for the nowcasting framework
implemented in epinowcast and applied here. Our approach is an extension of that proposed by Günther
et al.[1] which was itself an extension of the model proposed by Höhle and Heiden[2] and implemented in
the surveillance R package[3]. Compared to the model proposed in Günther et al.[1], epinowcast adds
an optional parametric assumption for the underlying delay from occurrence to report, support for jointly
nowcasting multiple related datasets, a flexible formula interface allowing for the specification of a large
range of models, and an efficient implementation in stan which makes use of sparse design matrices and
within chain parallelisation to reduce runtimes[4,5].

Decomposition into expected final notifications and report delay components

We follow the approach of Höhle and Heiden[2] and consider the distribution of notifications (ngtd) by time
of occurrence (t) and reporting delay (d) conditional on the final observed count Ngt for each dataset (g)
such that,

Ngt =
D∑

d=0
ngtd (1)

where D represents the maximum delay between time of occurrence and time of report which in theory could
be infinite but in practice we set to a value in order to make the model identifiable and computationally
feasible. This formulation means that ngtd | Ngt is multinomial with a probability vector (pgtd) of length D
for each t and g that needs to be estimated at the same time as estimating the expected number of final
notifications E[Ngt] = λgt.

An alternative approach, not explored here, is to consider each ngtd independently at which point the model
can be defined as a standard regression with the appropriate observation model and adjustment for reporting
delay (i.e it becomes a Poisson or Negative Binomial regression)[6]. An implementation of this approach is
available in Bastos et al.[6]. More work needs to be done to evaluate which of these approaches produces
more accurate nowcasts for epidemiological count data.

Expected final notifications

Here we follow the approach of Günther et al.[1] and specify the model for expected final notifications as
a first order random walk. This model can in principle be any model such as a more complex time-series
approach, a gaussian process, or a mechanistic or semi-mechanistic compartmental model. Extending the
flexibility of this model is an area of further work as is evaluating the benefits and tradeoffs of more complex
approaches.

log(λgt) ∼ Normal
(
log(λgt−1), σλ

g

)
(2)

log(λg0) ∼ Normal (log(Ng0), 1) (3)
σλ

g ∼ Half-Normal (0, 1) (4)
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Delay distribution

Again following the approach of Günther et al.[1] we define the delay distribution (pgtd) as a discrete time
hazard model (hgtd = P (delay = d|delay ≥ d, Wgtd)) but we extend this model to decompose Wgtd into 3
components: hazard derived from a parametric delay distribution (γgtd) dependent on covariates at the date
of occurrence, hazard not derived from a parametric distribution (δgtd) dependent on covariates at the date
of occurrence, and hazard dependent on covariates referenced to the date of report (ϵgtd).

For first component (γgtd) we assume that the probability of reporting p′
gtd on a given date given follow a

parametric distribution (in the baseline case a discretised log normal distribution) with the log mean and log
standard deviation being defined using an intercept and arbitrary shared, reference date indexed, covariates
with fixed (αi) and random (βi) coefficients,

p′
gtd ∼ LogNormal (µgt, υgt) (5)
µgt = µ0 + αµXγ + βµZγ (6)
υgt = exp (υ0 + αυXγ + βυZγ) (7)

The parametric logit hazard (probability of report on a given date conditional on not already having reported)
for this component of the model is then,

γgtd = logit

 p′
gtd(

1 −
∑d−1

d′=0 p′
gtd′

)
 (8)

The non-distributional logit hazarad components for the date of occurrence and report are then again defined
using an intercept and arbitrary shared covariates with fixed (αi) and random (βi) coefficients.

δgtd = µ0 + αδXδ + βδZδ (9)
ϵgtd = ϵ0 + αϵXϵ + βϵZϵ (10)

The overall hazard for each group, occurrence time, and delay is then,

logit(hgtd) = γgtd + δgtd + υgtd, hgtD = 1 (11)

where the hazard on the final day has been assumed to be 1 in order to enforce the constraint that all
reported observations are reported within the specified maximum delay. The probability of report for a
given delay, occurrence date, and group is then as follows,

pgt0 = hgt0, pgtd =
(

1 −
d−1∑
d′=0

pgtd′

)
× hgtd (12)

All (αi) and random (βi) coefficients have standard normal priors by default with standard half-normal
priors for pooled standard deviations.
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Observation model and nowcast

Expected notifications by time of occurrence (t) and reporting delay can now be found by multiplying
expected final notifications for each t with the probability of reporting for each day of delay (pgtd). We then
assume a negative binomial observation model with a joint overdispersion parameter (with a 1 over square
root standard half normal prior) and produce a nowcast of final observed notifications at each occurrence
time by summing posterior estimates for each observed notification for that occurrence time.

ngtd | λgt, pgtd ∼ NB(λgt × pgtd, ϕ), t = 1, ..., T. (13)
1
ϕ2 ∼ Half-Normal(0, 1) (14)

Ngt =
D∑

d=0
ngtd (15)

Specific model formulations

TODO: Detail specific model formulations

We explore two primary models and submit nowcasts from these models to the nowcasting hub. The first of
these is fit independently to each data set by age and location. Hospitalisations are modelled using a random
walk on the log scale. Reporting delays are then modelled parametrically using a lognormal distribution with
the log mean and log standard deviation each modelled using a weekly random walk with a pooled standard
deviation and a random effect for the day of the week (introduced on the 6th of December 2021) with public
holidays assumed to be reported like Sundays. Report date effects are again modelled using a random effect
for day of the week with public holidays assumed to be reported like Sundays. The second model is fit jointly
to age groups but is otherwise structured in the same way as the unpooled model except that report day of
the week effects and the observation overdispersion are assumed to be joint across age groups, age groups are
assumed to have a random intercept for both the log mean and the log standard deviation of the reporting
delay distribution, and there is no random effect for reference day of the week. We also consider a series of
pooled models which sequentially include the features of our most complex model. These are: age groups
are fit jointly, day of the week reporting effects, a random intercept for each age group, and a random walk
by positive test week shared across age groups.

Model | Formula Reference: Fixed, Report: Fixed | Reference: Fixed, Report: Day of week | Reference:
Age, Report: Day of week | Reference: Age and week, Report: Day of week | Reference: Age and week by
age, Report: Day of week | Independent by age, Reference: Week, Report: Day of week | Independent by
age, Reference: Week and day of week, Report: Day of week |

Implementation

The model is implemented as part of the epinowcast R package[7] using stan and cmdstanr[4,5]. Sparse
design matrices have been used for all covariates to limit the number of probability mass functions that
need to be calculated. epinowcast incorporates additional functionality written in R[8] to enable plotting
nowcasts and posterior predictions, summarising nowcasts, and scoring them using scoringutils[9]. All
functionality is modular allowing users to extend and alter the underlying model whilst continuing to use
the package framework.

Evaluation

TODO: Model evaluation. What targets. What scoring measures. What aggregation TODO:
Evaluation of performance for submitted models vs others submitted to forecasting hub.
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TODO: Add links to nowcasting hub and evaluation against those models.

We evaluate these models first visually across a range of nowcasting dates and then quantitatively using
proper scoring rules[9] on both the natural and log scales (corresponding to absolute and relative performance)
aggregating scores first across all targets and then stratifying in turn by age group, nowcast horizon, date of
postive test, and date of report. We also explore other aspects of our models performance by highlighting
models that have problematic fitting diagnostics and summarising the estimation time for each model. We
provide a report of this evaluation that is updated in real-time as new data and nowcasts become available.

Reproducibility

All analysis was carried out using R version 4.1.2[8]. The analysis pipeline described here is available as a
targets workflow[10] along with an archive of all interim results generated using gittargets[11] and stored
using piggyback[12]. A Dockerfile, and prebuilt archived image, has been made available with the code to
enhance reproducibility[13].

Resullts

This project is still underway and so results are not finalised. Please see our real-time evaluation report for
our initial findings.

Dicussion

TODO: Summarise project TODO: Discussion strengths and limitations of the evaluation
TODO: Compare approach evaluated here to the literature TODO: Discuss further work
TODO Summarise conclusions.

Software availability

Source code is available from: https://github.com/epiforecasts/eval-germany-sp-nowcasting/

License: MIT

Models are implemented in the epinowcast R package. This is available from: https://github.com/
epiforecasts/epinowcast/

Data availability

Input data and summarised results are available from: https://github.com/epiforecasts/eval-germany-sp-
nowcasting/tree/main/data

Data from all interim stages of the analysis is from: https://github.com/epiforecasts/eval-germany-sp-
nowcasting/releases/tag/latest

License: MIT
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