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ABSTRACT14

Multi-model and multi-team ensemble forecasts have become widely used to generate reliable short-term
predictions of infectious disease spread. Notably, various public health agencies have used them to
leverage academic disease modelling during the COVID-19 pandemic. However, ensemble forecasts
are difficult to interpret and require extensive effort from numerous participating groups as well as a
coordination team. In other fields, resource requirements have been reduced by training simplified models
that reproduce some of the observed behaviour of more complex models. Here we used observations of
the behaviour of the European COVID-19 Forecast Hub ensemble combined with our own forecasting
experience to identify a set of properties present in current ensemble forecasts. We then developed
a parsimonious surrogate forecast model intending to mirror these properties. We assess forecasts
generated from this model in real time over six months (the 15th of January 2022 to the 19th of July
2022) and for multiple European countries. We focused on forecasts of cases one to four weeks ahead
and compared them to those by the European forecast hub ensemble. We find that the surrogate model
behaves qualitatively similarly to the ensemble in many instances, though with increased uncertainty and
poorer performance around periods of peak incidence (as measured by the Weighted Interval Score).
However, the proposed model appears better probabilistically calibrated than the ensemble. We conclude
that our surrogate forecast model may have captured some of the dynamics of the hub ensemble, but
more work is needed to understand the implicit epidemiological model that it represents.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

INTRODUCTION32

Multi-model and multi-team ensembles have become increasingly popular as an approach to increase33

the robustness and performance of infectious disease forecasts over the last decade (Reich et al. 2022).34

The experience of other domains has inspired these approaches, for example, climate modelling (IPCC,35

n.d.), where ensembles of both multiple models and from multiple teams have a long history of providing36

forecasts that stakeholders trust. The trend towards large-scale multi-team ensemble forecasting in37

infectious diseases has accelerated during the COVID-19 pandemic due to a pressing need for reliable38

forecasts and a perception that many publicly available forecasts were low quality. Over 2020 and 2021,39

teams established COVID-19 Forecasting Hubs covering the US (Cramer et al. 2022), Germany and40

Poland (J. Bracher et al. 2021), and Europe (Sherratt et al. 2022) (all three including authors of this41

study). All of these collaborations ensembled contributions from multiple independent teams using a42

similar approach and have shown that their ensemble forecasts outperform most individually contributed43

forecasts whilst remaining generally robust to outliers in reporting. Both the US and European Forecast44

Hubs were supported and received funding from public health agencies (the Center for Disease Control,45

CDC, and European Center for Disease Prevention and Control, ECDC, respectively) with their forecasts46
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used in official communications by these agencies.47

Whilst there is robust and consistent evidence that multi-team ensemble forecasts provide reliable48

and performant forecasts across domains (Reich et al. 2022) they also have a range of downsides. The49

most significant is the difficulty in interpreting them. This relates both to the underlying mechanisms for50

the forecasts they produce and to understanding if and when their behaviour is desirable. This impacts51

users’ trust, how easily ensemble performance can be improved, and how easily contributor forecasts can52

be improved. Forecasts from these ensembles also require considerable resource cost to produce as they53

typically require contributions from multiple independent teams, the development of several models, and54

a centralised group to run the ensembling project. Additional challenges with maintaining multi-team55

collaborations can include providing detailed feedback to those contributing forecasts that would allow56

them to improve their forecast approaches, providing incentives for forecasters to continue to contribute57

and adjust their models to changing conditions, and difficulty improving the quality of the ensemble by58

learning from past predictive performance (Sherratt et al. 2022). Each of these issues may impact the59

long-term quality of the resulting forecasts and have implications for end-users. Little progress has so far60

been made in mitigating these downsides or in improving access to the high-quality and robust forecasts61

they seek to generate for geographies without coverage or for other infectious diseases. There has also62

been limited critical feedback on the structure of forecasting ensembling projects for infectious disease63

epidemiology and little evaluation of the effort required to produce them relative to their benefits for64

improving forecast performance.65

In climate forecasting (Castelletti et al. 2012; Edwards et al. 2021; Williamson et al. 2013), as66

well as in other fields such as astrophysics (Vernon, Goldstein, and Bower 2014), emulation approaches67

have been used to circumvent resource requirement issues for complex models by training a simplified68

model, usually, a non-parametric statistical model, to replicate the behaviour of either the entire model or69

sub-components. These approaches generally take the same inputs as the models they seek to emulate70

and then are trained based on the output from those models. In the context of epidemiological models,71

non-parametric emulation has been used to allow the rapid exploration of the parameter space of complex72

models that would otherwise be resource-prohibitive (Iskauskas et al. 2022; Charles et al. 2022). These73

methods may be less useful for resolving some of the issues of multi-team and multi-model forecasts as74

they do not provide interpretability, key for stakeholder take-up. Additionally, it is not clear how these75

methods perform out of sample, or how they would be applied to a quantile-based forecast.76

In this work, we draw insights from ensemble forecasts produced and endorsed by the COVID-1977

Forecast Hubs, as well as our forecasting work, to propose and evaluate a “surrogate” forecast model. This78

surrogate model seeks to reproduce ensemble performance by mimicking its behaviour based on a minimal79

set of easily communicated and epidemiologically justifiable assumptions, and limited computational80

resources with an easily generalised implementation. The primary aim of this approach is to help highlight81

the behaviour, and potential mechanisms behind this behaviour, of ensemble forecasts widely considered82

the gold standard for COVID-19 forecasting. Our secondary aim is to provide the basis for a robust83

forecasting system that others can easily reuse both in operational contexts and as a platform for future84

research.85

To achieve these aims, we evaluate an initial attempt at developing a surrogate model to replicate the86

observed behaviour of current multi-team forecast ensembles based on a set of clear assumptions. We87

submitted this model to the European Forecast Hub and here we evaluate its performance relative to the88

Hub ensemble. In this work, we first define the model and summarise its implementation, with a focus on89

minimal resource use and reproducibility as a GitHub Actions workflow (“About GitHub-hosted Runners”90

2022).91

We then evaluate the surrogate model’s real-time performance in comparison to the European Forecast92

Hub ensemble by visualising forecasts using the weighted interval score (Johannes Bracher et al. 2021), a93

commonly used proper scoring rule, and quantifying the empirical coverage of the forecasts produced.94

We highlight settings where this model performs well as a surrogate for the ensemble forecast and areas95

where it performs less well. Finally, we summarise our findings, discuss their implications, and highlight96

areas where more work is needed. We aim for this work to highlight some of the potential implicit97

assumptions of current COVID-19 Forecast Hub ensembles, provide a sensible, low-resource, surrogate98

model where large-scale collaborative forecasting efforts are not possible, and provide inspiration for99

forecasters looking to make principled improvements to their models.100
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MATERIALS AND METHODS101

Setting of the European COVID-19 Forecast Hub102

#> Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output103

#> %in% : ’length(x) = 2 > 1’ in coercion to ’logical(1)’104

To understand the behaviour of the Forecast Hub ensembles we need to first explore the structure of105

the COVID-19 Forecast Hubs (Cramer et al. 2022; J. Bracher et al. 2021; Sherratt et al. 2022). These106

collaborations share a similar design with a central team running the hub, vetting forecasts, and producing107

the ensemble forecast as well as teams of independent forecast contributors who design their forecast108

models and then use them to produce a weekly forecast that they then submit to the central hub team. Each109

hub targets a range of metrics, including test-positive reported cases, reported deaths, and hospitalisations;110

has a specific geographic focus, and asks for weekly forecasts (using MMWR epidemiological weeks111

i.e. Sunday to Saturday (Department of Health, n.d.)) over a time horizon of a few weeks. Observed data112

are available and updated daily, and most submitted forecasts use this dataset, along with potentially other113

sources of real-time information, to produce forecasts. Here, we focus on reported cases and primarily on114

the European Forecast Hub but our observations hold, in our view, across COVID-19 Forecast Hubs and115

to a lesser degree targets. We focus on reported cases as these represent the most common forecast target116

for COVID-19 forecast models (Nixon et al. 2022), they are often of the most direct interest due to being117

a leading indicator for other metrics such as hospitalisations (Meakin et al. 2022), and they are generally118

the most challenging to predict (Sherratt et al. 2022). In general, 5 main classes of forecast models are119

submitted (Johannes Bracher et al. 2022; Cramer et al. 2022), statistical forecasting models such as120

ARIMA models, mechanistic forecasting models based on the compartmental modelling framework and121

its generalisations (Srivastava, Xu, and Prasanna 2020; Li et al. 2021), semi-mechanistic approaches that122

blend both of these approaches (Castro et al. 2021; Nikos I. Bosse et al. 2022a), agent-based simulation123

models (Rakowski et al. 2010; Adamik et al. 2020), and human insight based forecast models that may124

also include elements of other methods (Karlen 2020; Nikos I. Bosse et al. 2022a). Real-time evaluation125

has shown that each of these classes of models may perform well depending on the context and specific126

implementation of the forecast model (Nikos I. Bosse et al. 2022a).127

We extracted forecasts and data on notified weekly COVID-19 cases from the European forecasting128

hub (Sherratt et al. 2022; E. C. F. H. Team 2021) from the 15th of January 2022 to the 19th of July129

2022 for the ensemble model (referred to as the EuroCOVIDhub-ensemble by the hub team) and130

the surrogate model (submitted as epiforecasts-weeklygrowth and defined in the following131

section). We included all locations covered by the European forecasting hub which were 32 European132

countries, including all countries of the European Union and European Free Trade Area, and the United133

Kingdom. Data on notified weekly cases was originally sourced from the Johns Hopkins University (JHU)134

curated data repository (Dong, Du, and Gardner 2020). We used the latest available observed data as of135

the 1st of September 2022 (commit f6922c3e4bdcb055abcbba8e73472afacac4cf40 from (E.136

C. F. H. Team 2022)). Incidence was aggregated by epidemiological week (i.e. Sunday through Saturday).137

As observations are subject to revisions this means that the data used to produce forecasts for a given138

date may not reflect the data used for evaluation. To account for this we followed the practice of the139

European forecasting hub project in excluding forecasts made using anomalous truth data in the week140

of the forecasts production and excluding forecasts for target weeks with anomalous data (Sherratt et al.141

2022). We defined anomalous data based on the implementation used by (E. C. F. H. Team 2021) where a142

data point is considered anomalous if a future revision alters it by more than 5%.143

The European Forecast Hub requests forecasts for one to four-week forecast horizon and requires144

forecasts to use a pre-specified format with 23 quantiles of the predictive probability distribution. No145

restrictions were placed on who could submit forecasts and the hub team actively invited participation146

from research groups known to be involved with COVID-19 forecasting projects. Teams submitted147

forecasts at the latest two days after the complete dataset for the forecast week became available and148

were allowed to use all data available at the time of submission (i.e including up to two days of data for149

the current week). The ensemble forecast was constructed by taking the median of all forecasts for each150

predictive quantile without the exclusion of any validly submitted forecast (where validity was defined as151

passing minimal formatting checks by the hub team and timely submission) (Sherratt et al. 2022). An152

ensemble was only produced for locations with at least 3 independent forecast models including the hub153

baseline model. Submitted forecasts and target observations are available from the European Forecast Hub154
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Table 1. Observations on the relative performance of the Forecast Hub ensemble compared to our
forecast submissions.

No. Observation

1 Robust to daily reporting artefacts
2 Some ability to forecast future trend changes
3 Less reactive to apparent observed changes in trend
4 Sharper forecasts
5 A tendency towards underprediction

6 Modelling the reporting process appears to have little impact

GitHub repository (E. C. F. H. Team 2022). We provide code in the repository of this study to streamline155

access.156

Observations based on previous forecasts157

We have contributed a range of forecasts to COVID-19 forecast collaborations, generally focused on158

semi-mechanistic statistical methods and human insight-based forecasts. Our forecast submissions159

have not systematically over- or under-performed other forecasts submitted to the forecasting hubs (see160

epiforecast tagged models at (E. C. F. H. Team 2021) and (Nikos I. Bosse et al. 2022a; Cramer et al.161

2022; J. Bracher et al. 2021; Sherratt et al. 2022)). The model-based forecasts we have contributed have162

focussed on trying to carefully model the underlying infectious disease dynamics from infection through163

to symptom onset, and test positivity using non-exponential delay distributions whilst also attempting164

to model the complexity of daily, within the week, reporting periodicity (Nikos I. Bosse et al. 2022a;165

Abbott, Hellewell, Thompson, et al. 2020; Abbott, Hellewell, Sherratt, et al. 2020). Based on our166

observations our forecasts have generally captured the current trend relatively well but have not been167

robust to reporting issues such as large outliers in reporting and changes to reporting patterns. Our168

previous methodology also requires significant computational resources, running for an hour on a Azure D169

v5-series 16-core machine, when producing forecasts for the European forecasting hub (“Pricing - Linux170

Virtual Machines” 2022). This resource usage is likely beyond the capacity of many interested in having171

access to state-of-the-art short-term forecasts of infectious diseases. In our model-based forecasts, we172

did not attempt to capture potential future interventions or known interventions not currently observed173

in the epidemiological data whereas in our human insight models these were implicitly included. We174

found that our human insight-based forecasts outperformed our model-based forecasts on average. This175

was particularly the case when forecasting cases and at longer forecast horizons. We hypothesised that176

this may have been driven by including additional information not observed in the epidemiological data177

(Nikos I. Bosse et al. 2022a).178

Unlike our epidemiologically motivated forecast submissions, the hub ensemble forecasts were179

typically robust to daily reporting artefacts. They also demonstrated some ability to forecast future180

changes in trends that were not present in the observed data similarly to our human insight forecasts181

indicating the likely inclusion of either human insight, or assumptions about future interventions. In182

comparison to our submitted forecasts, the ensemble forecasts were less reactive to changes in trend183

such as from stable or reducing case incidence to increasing incidence. On the other hand, this also184

meant that the ensemble was less likely to adopt short-term changes in incidence and hence produced185

better long-term forecasts. Finally, the ensemble forecast tended to produce sharper forecasts and have a186

tendency toward under- vs overpredicting. Our observations are summarised in Table 1.187

Model188

Assumptions and simplifications189

Based on our observations of forecast performance (summarised in Table 1), here we define a model190

with similar, but simplified, epidemiological characteristics to our previous approaches to model-based191

forecasting (Nikos I. Bosse et al. 2022a) to produce an ensemble-like performance without sacrificing192

interpretability and with a lower cost to produce. The first simplification we make is to model only weekly193

data, rather than using daily data and then aggregating. This mitigates the impact of daily reporting194

artefacts. It also serves to increase the auto-correlation of the forecasting model as there is an increased195
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Table 2. Assumptions/simplifications based on observations of the relative performance of Forecast Hub
ensembles compared to our forecast submissions.

Assumption Observation

Reported cases can be modelled using weekly data and
a generative process discretised by week

1, and 2

Reported cases can be modelled as if they represented
infections

6

The growth rate of infections can be represented as an
auto-regressive process with an order of 1 week

3 and 4

Unobserved interventions and more general changes in
transmission towards a stable state can be represented
using a multiplicative decay parameter

2, and 5

lag before changes in daily observations gain significant weight in the model. This leads to the observed196

ensemble behaviour of being relatively auto-correlated and resistant to short-term changes in trend.197

The second simplification we make is to ignore the underlying latent infection process and focus only198

on the observed reported cases. This removes the need for, potentially misspecified, external information199

on the delay from infection to report, and reduces computational requirements due to a reduction in model200

complexity. However, this sacrifices some of the interpretability of the forecast model as any transmission201

statistics we now calculate will be based on reported cases and not latent infections. As discussed in202

(Gostic et al. 2020) this leads to varying amounts of bias depending on the epidemic phase.203

The final simplification is to model the growth rate as a differenced auto-regressive process with an204

order 1 rather than using a gaussian process-based method as we have done in other work (Nikos I. Bosse205

et al. 2022a; Abbott, Hellewell, Thompson, et al. 2020; Abbott, Hellewell, Sherratt, et al. 2020). This206

represents a parsimonious approach in that we encode our expectation that the growth rate should vary207

over time and allow this to influence the forecast but we include only a single lag term, reducing the208

computational overhead of the model. To model potential unobserved interventions and more general209

changes in transmission, we include an additional growth rate modifier restricted to be between 0 and 1210

that differs depending on if the growth rate is positive or negative (due to potential differing responses211

when cases are growing or increasing) and that acts in a multiplicative fashion (meaning that larger212

absolute growth rates are reduced to zero growth more rapidly). This reflects a simplified interpretation213

of how the ensemble appears to react to potential future changes by assuming a gradual return to stable214

incidence.215

The only observation for which we do not make an adaptation is the apparent sharpness of the216

ensemble compared to our prior forecasting models. Instead, we make use of a negative binomial217

observation model allowing the inclusion of overdispersion. This choice is motivated by our belief that218

the underlying transmission process is an exponential discrete one and therefore a count error model with219

a log link function, where variance is linked to the mean, is a sensible choice. We suggest that part of the220

reason the hub ensembles exhibit such sharpness is due to the penalisation of overprediction compared221

to underprediction caused by the use of a generalised form of absolute error for the majority of forecast222

evaluations (Johannes Bracher et al. 2021). Our set of assumptions and simplifications are summarised in223

Table 2.224

Definition225

We model the expectation (λt ) of reported cases (Ct ) given past reported cases as an order 1 autoregressive226

(AR(1)) process by epidemiological week (t) on the log scale. The model is initialised by assuming that227

the initially reported cases are representative with a small amount of error (2.5%). We assume a negative228

binomial observation model with overdispersion φ for reported cases (Ct ).229

λ0 ∼ LogNormal(logC0,0.025× logC0)

λt =Ct−1ert , t > 0
Ct | λt ∼ NB(λt ,φ)
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where the mean and variance of the negative binomial are given by

E[Ct | λt ] = λt and Var[Ct | λt ] = λt +
λ 2

t

φ
.

Here rt can be interpreted as the weekly growth rate. rt is then modelled as a piecewise constant differenced230

AR(1) process modified such that the dependence of rt−1 is multiplied by a decay factor (ξ+,−) that varies231

dynamically according to the sign of rt−1. This assumes that the growth rate is non-stationary with a trend232

that is independent of the current growth rate (the differenced AR(1) process), the additional decay factor233

encodes the belief that larger absolute growth rates will tend more quickly towards no growth and that this234

process may work differently for positive or negative growth rates. This process can be defined as follows,235

r0 ∼ Normal(0,0.25)

rt =
(
1rt−1>0ξ++1rt−1≤0ξ−

)
rt−1 + εt

εt = 1t>0βεt−1 +ηt

where εt and ηt are error terms. The following priors are used,236

ξ+ ∼ Beta(3,1)
ξ− ∼ Beta(3,1)
β ∼ Normal(0,0.25)
ηt ∼ Normal(0,σ)

σ ∼ Half-Normal(0,0.2)
1√
φ
∼ Half-Normal(0,1)

Where σ , and 1√
φ

are truncated to be greater than 0 and β is truncated to be between -1 and 1. The237

Beta priors for ξ+,− have been chosen to be weakly informative that the reduction towards 0 growth238

is relatively slow. Similarly the prior for β has been chosen to be weakly informative that there is239

weak auto-correlation in differenced growth rates. σ has also been made weakly informative under the240

assumption that the potential change in growth rates in a single time-step should be relatively small.241

Forecast evaluation242

We standardised the magnitude of observations and forecasts across forecast locations, in order to facilitate243

comparison, by scaling both weekly notified test positive cases and forecast test positive cases by the244

population in the forecast region to an incidence rate per 10,000 people. This differs from the approach245

typically taken by the Forecast Hubs where no population standardisation is used (Cramer et al. 2022;246

J. Bracher et al. 2021; Sherratt et al. 2022). We then visually evaluated forecasts from a subset of247

locations by forecast horizon (1 and 4 weeks) on both the natural and log scales. The countries in this248

subset were Germany, Greece, Italy, Poland, Slovakia, and the United Kingdom. These countries were249

selected to include forecasts based on different numbers and types of submitted forecast models, to be at250

least partially representative of the full sample of forecast locations, and to include nations for which the251

authors had a good understanding of local data and transmission dynamics in the study period.252

We evaluate forecasts for all locations and horizons quantitatively using the absolute error (AE) of253

the median forecast and the weighted interval score (WIS) (Johannes Bracher et al. 2021). The WIS is a254

quantile-based proper scoring rule that approximates the continuous ranked probability score (CRPS).255

Both the WIS and CRPS are generalisations of the absolute error to evaluate probabilistic forecasts and256

are widely used to evaluate COVID-19 forecasts, including by the European Forecast Hub (Sherratt et257

al. 2022). We present WIS for the subset of forecasts we explore visually for both the ensemble and258

surrogate model by date and forecast horizon (1 and 4 weeks).259

To understand the relative performance of the surrogate model compared to the ensemble model, we260

calculate the relative performance (rWIS and rAE) by dividing the WIS/AE for the surrogate model by261

the WIS/AE of the ensemble model for all locations and forecast horizons. To maintain the propriety262
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of this score, we do this after first taking the means of scores for the relevant stratification. We explore263

relative performance by forecast horizon, by month and horizon, and by location and horizon.264

In addition to presenting the WIS for a subset of locations and the relative WIS for all locations, we265

also calculate and visualise the empirical coverage, which is the percentage of observed values within a266

given interval or below a given quantile, of both the surrogate and ensemble model for the 30%, 60%, and267

90% prediction intervals and by quantile (Nikos I. Bosse et al. 2022b). We also calculate the bias (see268

(Nikos I. Bosse et al. 2022b) and (Funk et al. 2019) for a more detailed definition) of both forecasting269

approaches, stratified by forecast horizon. This metric aims to capture the tendency for a forecast to under270

or over-predict. It captures the average proportion of the mass of the forecast distribution that is above or271

below the true value (and so can range from -1 to 1) with an unbiased forecast having an average bias272

value of 0. Lastly, we calculate and visualise the relative weighted interval score by quantile, stratified by273

forecast horizon, to assess the relative difference in performance across the predictive distribution.274

Implementation275

The model is implemented in stan (S. D. Team 2021) and R (4.2.0) (R Core Team 2019) as an276

extension of the baseline model from the forecast.vocs R package (0.0.9.7000) (Abbott 2021).277

We note that our use of an indicator function introduces a discontinuity to the posterior making it less278

suited for use with stan. Other model formulations without this feature would be more efficient and279

robust. The cmdstanr R package (0.5.2) (Gabry and Češnovar 2021) is used for model fitting with 2280

MCMC chains each having 1000 warm-up and 1000 sampling steps each (Gabry and Češnovar 2021).281

cmdstanr surfaces several settings that trade-off between sampling speed and the robustness of the282

approach. Here we take a conservative approach, as the model fit is not manually inspected during283

real-time usage and due to the expected complexity of the posterior (Betancourt 2017), and set the adapt284

delta setting to 0.99, and the maximum tree depth setting to 15. For real-time usage, convergence was285

not assessed, but during model development, the Rhat diagnostic was used alongside feedback from286

cmdstanr about the number of divergent transitions and exceedance of the maximum tree depth (Gabry287

and Češnovar 2021). During development, posterior predictions were also visually compared to observed288

data.289

To download and manipulate forecasts from the European forecasting hub (E. C. F. H. Team 2021) we290

use the data.table (1.14.2) (Dowle and Srinivasan 2021) and gh (1.3.0) (Bryan and Wickham291

2021) R packages. We make use of further functionality from the forecast.vocs R package (Abbott292

2021) to prepare data for forecasting, visualise forecasts and summary measures, and summarise forecasts.293

Forecast evaluation is implemented using the scoringutils R package (1.0.0) (Nikos I. Bosse et al.294

2022b), and the scoringRules R package (1.0.1) (Jordan, Krüger, and Lerch 2019).295

To ensure the reproducibility of this analysis dependencies are managed using the renv296

R package (0.14.0) (Ushey 2021) and a Dockerfile file along with a built Docker image297

(Boettiger 2015) (via GitHub Actions (“About GitHub-hosted Runners” 2022)) is provided in298

the code repository. Weekly forecasts were made using renv and based on GitHub Actions299

free tier as available in 2022 to ensure they require limited compute and that our implemen-300

tation is independent of local resources facilitating democratised access. The free GitHub301

Actions runner we used for all forecasts was Ubuntu 20.04 based with 2 cores (x86 64), 7302

GB of RAM, and 14 GB of SSD space. The code for this analysis can be found here: https:303

//github.com/epiforecasts/simplified-forecaster-evaluation The code for the304

forecasting model defined above along with the infrastructure required to forecast using GitHub Actions305

can be found here: https://github.com/seabbs/ecdc-weekly-growth-forecasts306

Versions archived on Zenodo are available (Abbott and Bosse 2022 ) and (Abbott and Sherratt 2022).307

RESULTS308

Summary of the European COVID-19 Forecast Hub Setting309

In our study period, incidence rates across European nations and in the UK were primarily driven by310

the spread of novel subvariants of concern related to the Omicron variant and changes in population311

susceptibility. Many countries, such as the UK, saw large BA.1 waves in January, resulting in declining312

incidence rates through February (Figure 1). From late February through to the end of May, most nations313

saw another wave driven by BA.2. This wave typically saw lower reported incidence rates, and was314

characterised by a lower peak than the BA.1 wave with a more gradual decrease in incidence. The end of315
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our study period was dominated by the gradual take-over of the BA.4/BA.5 subvariants that again had316

a lower peak and lower absolute growth rates. Unlike earlier periods in the pandemic, our study period317

did not see the use of new non-pharmaceutical interventions (NPIs) in response to increasing COVID-19318

incidence in most locations. In addition, ascertainment rates likely reduced over time in most locations319

due to reductions in routine testing and test availability. Whilst both the reduced use of NPIs and testing320

generally occurred across nations our study period also marked an increase in the heterogeneity of the321

response to the COVID-19 pandemic with nations changing policy at different times and to different322

degrees. This is in contrast to the early COVID-19 pandemic response for which most nations took similar323

actions at similar times.324

We extracted forecasts starting from the 15th of January until the 19th of July 2022 for all countries325

covered by the European forecasting hub (nations of the European Union, the European Free Trade326

Agreement, and the United Kingdom, making 32 unique locations). In total 8846 forecasts were made327

across all locations, with 27 unique forecast dates and 32 independent forecast models (including the328

European hub baseline model). Of these models, 10 forecasted in at least 30 locations including our329

original submission (referred to as epiforecasts-EpiNow2 by the hub), and our surrogate model.330

Of the remaining models submitted 16 were submitted in only one location. Single-location models331

were clustered in a few locations, particularly in Germany and Poland (likely due to the folding of the332

German/Poland forecasting hub into the European forecasting hub project (Sherratt et al. 2022)). Italy333

was also an outlier with 4 models that submitted nowhere else. 4 models were submitted for between 3334

and 30 locations and all these models varied the number of locations they submitted forecasts for over335

time, potentially indicating manual curation or models targeted at specific conditions.336

Across all forecast dates and locations the minimum number of independent forecasts was 4 with the337

maximum being 20. The median number of independent forecasts per location and forecast date was 10.338

All locations received forecasts from at least 10 models with the median number of forecast models per339

location being 12. Coverage of forecast dates varied across submitted models with 8 models submitting340

for all dates, 16 models submitting for at least 90% of dates, and 6 models submitting for fewer than 50%341

of forecast dates. In general, there was no clear difference in forecast date coverage between models that342

submitted for all locations vs a small subset but models with partial coverage of locations all also had343

partial coverage of forecast dates.344

63 observations, stratified by week and location, were defined to be anomalous within the study period345

by the European Forecast Hub (E. C. F. H. Team 2021). Forecasts for these observations were excluded346

as were forecasts for forecast weeks where they were the latest available data. Data anomalies were not347

randomly distributed with some locations being particularly prone to data revisions including Lithuania348

(with 23 weeks with data anomalies), and Portugal (with 13 weeks with data anomalies). Anomalies349

were also not evenly distributed over time with a higher proportion occurring earlier in the study period350

(potentially due to our choice to extract data from the 1st of September which effectively truncated351

anomalies). 7.3% of forecasts were excluded across all horizons due to anomalies in the observed data.352

Aggregated across horizons 10.3% of forecasts included at least one week with anomalous data.353

Forecast evaluation354

Visualisation of forecasts by horizon355

In our example set of locations, the absolute performance of the ensemble and the surrogate model was356

visually similar on the log scale in all locations at short forecast horizons though this varied by location357

(Figure 1 b). On the natural scale the difference in performance was more marked, especially for periods358

of peak incidence and at longer horizons (Figure 1 a). Performance was not homogeneous across our359

set of example locations with the surrogate model performing similarly to the ensemble in Slovakia360

whilst in the United Kingdom and Germany the surrogate model performed substantially worse for some361

forecast dates (Figure 1). For both the ensemble and the surrogate, performance decreased as the forecast362

horizon increased with this being particularly noticeable for the surrogate model during periods of peak363

incidence. In general, in the study period, the ensemble appeared to be better able to forecast peak364

incidence. Both models forecast large reductions in incidence in Poland during May that did not occur365

whilst only the ensemble forecast spuriously forecast similar large reductions in Germany during June. In366

comparison to the ensemble model the surrogate model appeared less likely to place weight on unfeasibly367

large reductions in incidence during periods of declining incidence but on other hand was more likely to368

forecast continuing increases in incidence (for example in February in Slovakia and Poland).369
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Figure 1. a.) Forecasts of notified test-positive cases (per 10,000 population) by epidemiological week
in Germany, Greece, Italy, Poland, Slovakia, and the United Kingdom, by forecast horizon (one and four
weeks) for the surrogate model (orange) and forecast ensemble (green). 30%, 60%, and 90% prediction
intervals are shown. The black line and points are the notified cases as of the date of data extraction rather
than those available at the time. b.) A replicate of a.) but with incidence rates on the log scale. c.)
Weighted interval scores at the one-week and four-week forecast horizon by epidemiological week in
Germany, Greece, Italy, Poland, Slovakia, and the United Kingdom on the log scale.
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Relative forecast evaluation370

Evaluating the ensemble and surrogate models using the WIS across all locations and forecast dates we371

found that the mean relative performance of the surrogate model was 1.27 at the one-week horizon, 1.28372

at the two-week horizon, 1.4 at the three-week horizon, and 1.69 at the four-week horizon, indicating373

that the ensemble forecast outperformed the surrogate forecast for all horizons by at least 25% and that374

the relative performance of the surrogate model degraded as the forecast horizon increased (Figure 2375

c). Much of this outperformance, especially at longer forecast horizons, was driven by a small subset376

of forecasts with relative performance having a heavy tail (Figure 2 a). If we instead consider median377

relative performance (note this is not a proper scoring rule and should not be used to choose between378

models) we find that, relative to the ensemble, the surrogate scored 1.21 at the one week horizon, 1.14379

at the two week horizon, 1.2 at the three week horizon, and 1.28 at the four week horizon. This would380

suggest that an increasingly skewed score distribution as the forecast horizon increased is responsible for381

the increase in the mean relative score (Figure 2 a). 31% of individual surrogate forecasts scored better382

than the comparable ensemble forecast, 68% performed within 50% of the comparable ensemble forecast,383

and 17% had a more than 100% worse WIS than the comparable ensemble forecast.384

If we consider only the median point forecast, using the absolute error, we see that the ensemble385

forecast again outperformed the surrogate forecast (rAE for the surrogate compared to the ensemble 1.34).386

If we instead consider the median of the absolute error we see that the difference in performance has387

reduced indicating a similar skewed score distribution for point forecasts as for the whole predictive388

distribution (rAE 1.11). Across forecast horizons the same pattern of outperformance holds. However, the389

difference in relative performance was less than when the full probability distribution was accounted for,390

with this becoming more marked as the forecast horizon increased (Figure 2 c).391

The surrogate model’s relative performance varied over time with substantially worse performance392

from January to March compared to later in the year across all forecast horizons based on changes in393

the relative score distribution and its summary statistics (Figure 2 b). The majority of the difference in394

performance appeared to be driven by a thicker right tail with this being a particular feature of forecasts395

at longer horizons. Forecast performance in March had a bimodal distribution at the four-week horizon396

with a substantial fraction of surrogate forecasts outperforming the ensemble and a substantial fraction397

substantially underperforming. This variation in performance may have been linked to the BA.2 wave398

which peaked in most locations during this period if the surrogate model was more likely to overpredict399

peak incidence than the ensemble forecast.400

There was also substantial variation across forecast locations with the surrogate performing relatively401

well in some locations at some forecast horizons, for example, the four-week horizon in the United402

Kingdom, and badly in others, for example, the four-week forecast in Switzerland (Figure 2 c). In general,403

across locations, as observed overall, relative forecast performance degraded across horizons with a404

heavier right tail at longer horizons. Some locations showed less of this behaviour, for example, Spain,405

and in some, it was very dominant, for example, Switzerland.406

Forecast calibration407

Overall the surrogate model was relatively well calibrated at the 30%, 60% and 90% prediction interval,408

though with a tendency to be slightly underconfident, with empirical coverage of 30.5%, 62.5%, 92.3%409

respectively. The ensemble model was less well calibrated, with a tendency to be overconfident with410

empirical coverage of 24.8%, 51%, 79% respectively (Figure 3 a). When stratified by forecast horizon the411

ensemble forecast was best calibrated at the one-week forecast horizon, and then became progressively412

less well calibrated as the forecast horizon increased (Figure 3 a). In comparison, the surrogate forecast413

was less well calibrated than the ensemble forecast at the one-week forecast horizon with a tendency to414

have a larger empirical coverage than required (Figure 3 a). At longer horizons and narrower prediction415

intervals, the surrogate forecast became better calibrated though with a tendency to be overconfident.416

This was not the case for the 90% prediction interval where the surrogate model covered more than the417

expected interval, for all horizons, indicating forecasts were overly uncertain for this interval regardless of418

the horizon.419

Stratifying calibration by quantile and forecast horizon the ensemble forecast was conservative at all420

horizons for quantiles larger than the median whilst being comparably well calibrated for intervals below421

the median (Figure 3 b). This behaviour became more prominent as the forecast horizon increased. In422

contrast, the surrogate forecast was generally equally well calibrated across horizons with a tendency423

to be under confident for intervals above the median. At longer horizons, however, quantiles below the424
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Figure 2. Relative weighted interval score by location, horizon, and forecast date for the surrogate
forecast model compared to the ensemble forecast model on the log scale. a.) The density of the relative
score by horizon. Horizontal black lines give the 5%, 35%, 65%, and 95% quantiles. b.) The density of
the relative score by month for a given forecast horizon stratified by the one and four-week forecast
horizon. c.) The average relative weighted interval score and absolute error for the surrogate model
compared to the ensemble forecast by forecast horizon. d.) The density of the relative score by forecast
location stratified by the one and four-week forecast horizon. The dashed line on all plots indicates when
the ensemble forecast is equivalent to the surrogate forecast. The vertical black lines on the y-axis give
individual relative scores.
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median were over confident.425

Breaking down the relative weighted interval score by forecast interval we observe that the surrogate426

model produces forecasts that differ most from the ensemble in the outer intervals and in particular the427

tails of the forecast (Figure 3 c). This is true across forecast horizons but the magnitude of the difference428

increases.429

Calculating the bias of the forecasts from each model we see that the (Figure 3 d) ensemble forecast430

is initially biased towards underprediction but this bias reduces as the forecast horizon increases. In431

comparison, the surrogate forecast model is biased towards overprediction for all forecast horizons with432

the magnitude of this bias appearing to increase linearly with the forecast horizon.433

DISCUSSION434

Summary435

In this study, we defined a surrogate model aiming to replicate some of the observed behaviour of the436

European Forecast Hub multi-team ensemble for forecasting test-positive reported COVID-19 cases in437

European nations. We first defined a set of assumptions for how the surrogate model should behave438

based on our observations of the European Forecast Hub ensemble, and our experience submitting439

forecasts to various Forecast Hubs. We aimed for a model that could be easily understood, that produced440

epidemiologically meaningful summary statistics, and that could be run with low compute resources. We441

further provide a fully reproducible workflow for running and evaluating this model using GitHub actions442

facilitating others to do the same.443

Over the 6 months of the study period, we found that our surrogate model produced forecasts that were444

visually similar to those from the Forecast Hub ensemble on the log scale though with greater uncertainty.445

Visual differences were more marked on the natural scale with the surrogate model forecasting spuriously446

high peak incidence. In a subset of example locations, we observed some variation in performance447

across locations, that the ensemble better-captured peak incidence, and that the surrogate model appeared448

biased toward overprediction. Evaluating the relative performance of the surrogate model compared to449

the European Forecast Hub ensemble we found that the mean performance was substantially worse and450

that relative performance decreased with the forecast horizon. The median forecast performance of the451

surrogate model was also worse when compared to forecasts from the ensemble though the majority of452

surrogate forecasts were within 50% of the performance observed for the ensemble forecast. The difference453

in mean and median relative performance suggested a skewed distribution in scores, which we confirmed454

visually. This means that a relatively small fraction of forecasts were responsible for a substantial portion455

of the difference in performance. Evaluating point forecast performance indicated a similar pattern of456

performance as that observed using the full predictive distribution though the relative performance of457

the surrogate model generally improved. Performance varied by location and forecast date with the458

surrogate model performing worse in the first part of 2022 which may have been linked to incidence rates459

peaking across forecast locations linked to the spread of BA.2. In general, the relative performance of the460

surrogate model degraded as forecast horizons increased with the distribution of relative performance461

having an increasingly heavy right tail as the forecast horizon increased indicating a greater share of462

forecasts performing very poorly in comparison to the hub ensemble. The Forecast Hub ensemble was463

poorly calibrated, particularly at longer forecast horizons and larger prediction intervals, compared to464

the surrogate model though the surrogate model tended to be overly uncertain at large intervals. The465

ensemble forecast was biased towards under-prediction at short to medium forecast horizons but unbiased466

at longer horizons. In comparison, the surrogate model was biased towards overprediction and this bias467

increased linearly with the forecast horizon.468

Strengths and Weaknesses469

Our study benefits from having been conducted using forecasts produced in real-time, rather than470

retrospectively, and submitted to an independent forecast research hub (though we note the overlap471

between authors on this study and the European Forecast Hub (Sherratt et al. 2022)). This means that our472

results are not subject to hindsight bias. The downside of this approach is that it was not possible to update473

the surrogate model over time in response to the initial evaluation or to explore other parameterisations that474

might be more successful of which there are likely several. However, as our study has been conducted with475

a focus on reproducibility and openness our findings can be replicated or extended by others regardless of476

compute availability (due to our use of GitHub actions as a compute platform which is freely available to477
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Figure 3. a.) Empirical coverage of the surrogate (orange) and ensemble (green) forecasts at the 90%,
60%, and 30% prediction intervals stratified by forecast horizon. Ideally, a well-calibrated forecast should
have empirical coverage for a given prediction interval that equals the nominal level of the interval (i.e.,
30%, 60% and 90%, respectively). b.) Empirical coverage by quantile for both the surrogate and
ensemble forecasts. A well-calibrated forecast should have empirical quantiles that match the theoretical
ones. The green area of this figure corresponds to conservative forecasts. c.) Median relative weighted
interval score by quantile and forecast horizon for the surrogate forecast compared to the ensemble
forecast. d.) The bias of the ensemble and surrogate forecasts stratified by horizon.
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researchers). An additional downside to this approach is that the hub ensemble includes forecasts from our478

surrogate model, increasing the similarity between the two approaches. This is difficult to avoid without479

retrospectively re-calculating the ensemble using the same approach as taken by the hub which would480

reduce the independence of the hub ensemble as a source of truth to compare our forecasts against. Given481

the number of forecasts submitted in most locations and the European Forecast Hubs’ practice of not482

calculating an ensemble when fewer than 3 independent forecasts were available, the bias in our results483

caused by this limitation should be relatively small. Notably in this study, we focussed on replicating484

the Forecast Hub ensembles’ observed behaviour rather than attempting to define an optimal forecast485

for forecast consumers. It is possible that if we had instead aimed to develop a forecast methodology486

that minimised the evaluation criteria we planned to use, especially if we relaxed our assumed compute487

resource constraints, we would have produced forecasts that performed better relative to the hub ensemble.488

However, if we start from the view that the Forecast Hub ensemble has traits that are desirable for use by489

policy-makers (i.e robustness and good average performance), which can be found widely in the literature490

(Cramer et al. 2022; J. Bracher et al. 2021; Sherratt et al. 2022), then our approach may make sense as a491

way of producing a “good” forecast without sacrificing interpretability.492

Developing forecast methodologies with limited resources is critical as whilst improving predictive493

performance is a key goal of short-term forecasting it is also important that forecast models be accessible494

as this makes it easier to iteratively improve them, and makes them more flexible when used in real-time495

settings (Osthus 2022). An example of the lack of flexibility of the Forecast Hub ensemble, and its496

constituent models, is the ensembles response to upswings linked to variant dynamics, with the growth497

of one variant being temporally hidden by the decline of another. Rather than forecasting this ahead of498

time the Forecast ensembles generally only reacted to changes in the observed data indicating that variant499

information was not being used by most forecasters. Unlike the Forecast Hub ensemble the surrogate500

model can be, and indeed has been (Abbott, Sherratt, and Funk 2021), easily extended to capture this.501

Other examples where additional transient information is available to forecasters can be readily thought502

of implying this is a general advantage of simpler methods.503

Our focus on replicating the performance of the hub ensemble is also useful as the surrogate model504

may highlight some of the emergent behaviour of the ensemble captured in our assumptions, such as auto-505

correlation across time points, and the growth rate tending towards zero as the forecast horizon increases.506

It also highlights some of the differences between our surrogate forecast model and the ensemble that507

may lead to new insights into the mechanisms leading to the ensemble’s behaviour, such as the generally508

poor coverage of the ensemble that could not be explained by the assumptions we used in developing509

our surrogate methodology. Whilst we normalised reported cases to be population-adjusted incidence510

rates, and so can more easily compare across locations than using the approach commonly implemented511

by the Forecast Hubs (Cramer et al. 2022; J. Bracher et al. 2021; Sherratt et al. 2022), our results are still512

conditional on the use of the weighted interval score as an evaluation metric. As this proper scoring rule513

scales with the order of magnitude of the predicted quantity this means that forecasts during periods of514

higher incidence are given more weight than forecasts from periods of low incidence. It also means that515

overprediction is penalised more than underprediction as incidence rates are bounded at zero but relatively516

weakly bounded by populations at the upper bound (as incidence rates are typically only a small fraction517

of the overall population). This bias could explain the relatively poor performance of the surrogate model,518

compared to the ensemble, despite the surrogate model being comparably well-calibrated. We considered519

alternative methods of forecast evaluation that would be robust to this potential source of bias but choose520

to stick relatively closely to the methodology used by the European Forecast Hub (Sherratt et al. 2022),521

aside from the use of population weighting to facilitate comparison between forecast locations, as these522

choices inform the development of submitted models and so are key to our findings.523

Literature context524

There are no other studies in the epidemiology literature which we are aware of that attempt to develop a525

forecasting model based on the observed behaviour of a multi-team, multi-model ensemble. Few studies526

focus on delivering computationally feasible forecasting models in a reproducible framework backed527

by an openly accessible compute platform. However, the US (Cramer et al. 2022), European (Sherratt528

et al. 2022), and Germany/Poland (J. Bracher et al. 2021) forecasting hubs have published a range of529

evaluations of forecasts submitted to their platforms and the relative performance of their ensembles.530

In general, these studies have struggled to draw general conclusions about the structural assumptions531
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of forecast models they consider “good” (generally they have defined this as minimising the weighted532

interval score, as in this study).533

The poor calibration of the forecast ensembles produced by median Hub ensembles has been noted534

repeatedly (Cramer et al. 2022; J. Bracher et al. 2021; Sherratt et al. 2022) but little progress has been535

made in understanding the causes or suggesting alternatives. Progress in understanding which structural536

model features lead to better infectious disease forecasts has been limited. The US Forecast Hub identified537

the top 5 performing models and noted the structural assumptions they made, but couldn’t directly link538

assumptions with performance (Cramer et al. 2022). They also did not extensively compare and contrast539

these conclusions to arrive at a set of desired forecast assumptions (as done in this study to motivate the540

surrogate model), or explore the performance of a forecasting model designed with these assumptions541

in mind. Similarly, the Germany and Poland forecasting hubs were able to identify forecast models that542

performed comparably as well as their ensemble forecasts but did not derive structural assumptions that543

led to this out-performance or detail explicitly what the desirable performance characteristics would be,544

aside from optimising the weighted interval score. All comparable Forecast Hub projects found that their545

ensemble was often the best choice, had desirable characteristics such as robustness - though this was546

rarely fully defined - and should be the output used by forecast consumers (Cramer et al. 2022; J. Bracher547

et al. 2021; Sherratt et al. 2022). In general, during the study period, all projects used the same unweighted548

median ensemble forecast of all submissions. The US (Ray et al. 2022), and European (Sherratt et al.549

2022), forecasting hub also evaluated a range of other ensemble approaches, such as inverse weighted550

interval score weighting, unweighted ensembles of a selection of models based on recent performance,551

and mean ensembling. Work on this is still ongoing but these more complex ensembling approaches were552

shown to outperform the median of all submitted forecasts in many cases in the case of the US forecasting553

hub and did not outperform in the case of the European forecasting hub. No Forecast Hub has switched to554

these alternative ensemble designs for their operational forecast of reported cases, though the US hub555

has switched to a trained ensemble for death forecasts. This suggests that the hub teams do not think556

the evidence base is strong enough for trained ensembles to be used by forecast consumers for reported557

cases and hence the median of all submitted forecasts remains the community-suggested default ensemble558

option and a sensible target for our study.559

Other studies have been published evaluating single forecast models in comparison to ensemble560

performance from the Forecast Hub. In general, these have not focussed on replicating ensemble561

behaviour but rather optimising the target evaluation metric. Our previous work also highlighted the lack562

of calibration in an ensemble forecast from the Germany/Poland forecasting hub compared to forecasts563

from epidemiological models and noted the bias towards underprediction observed in the ensemble564

forecasts and not in our model-based forecasts (Nikos I. Bosse et al. 2022a; J. Bracher et al. 2021).565

Finally, our results are potentially sensitive to the definition used to define anomalous observations566

(generally related to retrospective data revisions). Here we follow the practice of the European Forecast567

Hub (E. C. F. H. Team 2021) of excluding forecasts for weeks with a data revision of more than 5% and568

forecasts made based on data that is subsequently revised by more than 5%.569

Further work570

Whilst we derived our surrogate model from a range of assumptions based on observing ensemble571

forecasts behaviour and the behaviour and structure of submitted models avenues for future improvement572

remain in terms of improving the approach used to elicit these observations. In follow-up work, a more573

rigorous approach to this could be taken to further refine this set of assumptions, in particular using574

the input of a wider pool of researchers. The findings from our study may also be useful for informing575

this improved set of assumptions. A particular focus should be on understanding why our surrogate576

model was liable to overestimate peak incidence and what simple additional assumptions may be used to577

mitigate this. In addition, the model we derived based on our assumptions was likely not optimal both578

in terms of compute time and accuracy at reproducing ensemble-like behaviour. Models with a more579

complex auto-correlation structure and more refined approaches to localised trends should be explored to580

improve relative performance to ensemble forecasts. An example of a family of possible approaches are581

structural time series models which have many of the characteristics implied by our assumptions for how582

forecast ensembles typically operate. As we identified that the tails of our predictive distributions were583

responsible for a large proportion of the difference in performance compared to the forecast ensemble584

it may be the case that post-processing of forecasts from our surrogate model would enhance their585
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similarity to the forecast ensemble. This seems likely to improve out-of-sample performance but does not586

help with understanding the implicit assumptions driving the performance of multi-model, multi-team587

infectious disease forecast ensembles. As we have hypothesised that the use of absolute scoring measures588

is inappropriate and leads to performance characteristics that are unlikely to be favoured by forecast589

stakeholders more work should be done in this area. If new forecast ensemble methods are adopted as best590

practice by Forecast Hubs then follow-up work attempting to create surrogate forecast models should also591

use these approaches and this will likely alter the observed characteristics of the hub ensemble forecasts,592

for example, the tendency to be poorly calibrated. In September 2022, GitHub announced support for593

hosted GitHub Action runners with additional compute power (“GitHub Actions Larger Runners - Are594

Now in Public Beta” 2022). Whilst a paid feature this may allow more compute-intensive models, with595

fewer potential performance trade-offs, to be easily democratised though only if funds are available to596

support the hosting costs. One potential research area is to explore forecasting methods that can be used597

with a range of computing resources though this would require extensive evaluation and documentation to598

make it clear to users what the trade-offs between compute usage and forecast performance are. More work599

is needed to understand the best practice treatment of data revisions when evaluating forecasts and the600

potential bias these may cause. Lastly, here we have only explored a surrogate for an ensemble for a single601

disease, a limited set of locations, and a single target (incident cases), meaning our findings are difficult to602

generalise. Follow-up work should explore whether this behaviour holds across diseases, locations, and603

epidemiological targets where the behaviour of ensembles is notably different. However, this is limited to604

infectious diseases with similar large-scale forecast ensembling projects. These projects remain relatively605

rare despite them showing obvious promise to improve the forecasts available to stakeholders.606

CONCLUSIONS607

We conclude that our simplified forecast model may have captured some of the dynamics of the hub608

ensemble but that more work needs to be done to understand the epidemiological model that represents its609

behaviour and whether or not this is the optimal choice for stakeholders’ requirements. We also conclude610

that our findings may be largely driven by the choice of evaluation measure used by the Forecast Hub.611

While this measure has desirable mathematical properties and is routinely used in a similar form e.g., in612

weather forecasting, it is subject to debate whether it appropriately reflects forecast users’ requirements613

and perceptions as to what makes a good forecast. Our work is useful for forecast users to understand the614

inherent assumptions of the forecasts they are making use of and to researchers thinking about how to615

develop forecasts that perform similarly to current multi-model and multi-team forecast ensembles that616

are trusted by stakeholders.617
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Jordan, Alexander, Fabian Krüger, and Sebastian Lerch. 2019. “Evaluating Probabilistic Forecasts with731

scoringRules.” Journal of Statistical Software 90 (12): 1–37. https://doi.org/10.18637/732

jss.v090.i12.733

Karlen, D. 2020. “Characterizing the Spread of CoViD-19.”734

Li, Michael Lingzhi, Hamza Tazi Bouardi, Omar Skali Lami, Thomas A Trikalinos, Nikolaos K Trichakis,735

and Dimitris Bertsimas. 2021. “Forecasting COVID-19 and Analyzing the Effect of Government736

Interventions.” medRxiv. https://doi.org/10.1101/2020.06.23.20138693.737

Meakin, Sophie, Sam Abbott, Nikos Bosse, James Munday, Hugo Gruson, Joel Hellewell, Katharine738

Sherratt, CMMID COVID-19 Working Group, and Sebastian Funk. 2022. “Comparative Assessment739

of Methods for Short-Term Forecasts of COVID-19 Hospital Admissions in England at the Local740

Level.” BMC Med. 20 (1): 86. https://doi.org/10.1186/s12916-022-02271-x.741

18/19

https://doi.org/10.1038/s41467-021-25207-0
https://CRAN.R-project.org/package=gh
https://CRAN.R-project.org/package=gh
https://CRAN.R-project.org/package=gh
https://doi.org/10.1016/j.envsoft.2012.01.002
https://arxiv.org/abs/2110.01546
https://arxiv.org/abs/2110.01546
https://arxiv.org/abs/2110.01546
https://arxiv.org/abs/2209.09617
https://doi.org/10.1073/pnas.2113561119
https://ibis.health.state.nm.us/resource/MMWRWeekCalendar.html
https://ibis.health.state.nm.us/resource/MMWRWeekCalendar.html
https://ibis.health.state.nm.us/resource/MMWRWeekCalendar.html
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://doi.org/10.1038/s41586-021-03302-y
https://doi.org/10.1371/journal.pcbi.1006785
https://github.blog/changelog/2022-09-01-github-actions-larger-runners-are-now-in-public-beta/
https://github.blog/changelog/2022-09-01-github-actions-larger-runners-are-now-in-public-beta/
https://github.blog/changelog/2022-09-01-github-actions-larger-runners-are-now-in-public-beta/
https://doi.org/10.1371/journal.pcbi.1008409
https://doi.org/10.1371/journal.pcbi.1008409
https://doi.org/10.1371/journal.pcbi.1008409
https://www.ipcc.ch/report/sixth-assessment-report-cycle/
https://www.ipcc.ch/report/sixth-assessment-report-cycle/
https://www.ipcc.ch/report/sixth-assessment-report-cycle/
https://arxiv.org/abs/2209.05265
https://doi.org/10.18637/jss.v090.i12
https://doi.org/10.18637/jss.v090.i12
https://doi.org/10.18637/jss.v090.i12
https://doi.org/10.1101/2020.06.23.20138693
https://doi.org/10.1186/s12916-022-02271-x


Nixon, Kristen, Sonia Jindal, Felix Parker, Nicholas G Reich, Kimia Ghobadi, Elizabeth C Lee, Shaun742

Truelove, and Lauren Gardner. 2022. “An Evaluation of Prospective COVID-19 Modelling Studies743

in the USA: From Data to Science Translation.” Lancet Digit Health 4 (10): e738–47. https:744

//doi.org/10.1016/S2589-7500(22)00148-0.745

Osthus, Dave. 2022. “Fast and Accurate Influenza Forecasting in the United States with Inferno.” PLoS746

Comput. Biol. 18 (1): e1008651. https://doi.org/10.1371/journal.pcbi.1008651.747

“Pricing - Linux Virtual Machines.” 2022. https://azure.microsoft.com/en-gb/pricing/748

details/virtual-machines/linux/.749

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R750

Foundation for Statistical Computing. https://www.R-project.org/.751

Rakowski, Franciszek, Magdalena Gruziel, Łukasz Bieniasz-Krzywiec, and Jan P Radomski. 2010.752

“Influenza Epidemic Spread Simulation for Poland — a Large Scale, Individual Based Model Study.”753

Physica A: Statistical Mechanics and Its Applications 389 (16): 3149–65. https://doi.org/754

10.1016/j.physa.2010.04.029.755

Ray, Evan L, Logan C Brooks, Jacob Bien, Matthew Biggerstaff, Nikos I Bosse, Johannes Bracher, Estee756

Y Cramer, et al. 2022. “Comparing Trained and Untrained Probabilistic Ensemble Forecasts of757

COVID-19 Cases and Deaths in the United States.” Int. J. Forecast., July. https://doi.org/758

10.1016/j.ijforecast.2022.06.005.759

Reich, Nicholas G, Justin Lessler, Sebastian Funk, Cecile Viboud, Alessandro Vespignani, Ryan J760

Tibshirani, Katriona Shea, et al. 2022. “Collaborative Hubs: Making the Most of Predictive Epidemic761

Modeling.” Am. J. Public Health, April, e1–4. https://doi.org/10.2105/ajph.2022.762

306831.763

Sherratt, Katharine, Hugo Gruson, Helen Johnson, Rene Niehus, Bastian Prasse, Frank Sandman,764

Jannik Deuschel, et al. 2022. “Predictive Performance of Multi-Model Ensemble Forecasts of765

COVID-19 Across European Nations.” medRxiv. https://doi.org/10.1101/2022.06.16.766

22276024.767

Srivastava, Ajitesh, Tianjian Xu, and Viktor K Prasanna. 2020. “Fast and Accurate Forecasting of768

COVID-19 Deaths Using the SIkJα Model,” July. https://arxiv.org/abs/2007.05180.769

Team, European COVID-19 Forecast Hub. 2021. “Forecasts of New Cases and Deaths770

Due to Covid-19 over the Next Four Weeks in Countries Across Europe and the UK.”771

https://covid19forecasthub.eu/.772

———. 2022. “Covid19-Forecast-Hub-Europe: European Covid-19 Forecast Hub.” https://github.773

com/covid19-forecast-hub-europe/covid19-forecast-hub-europe; Github.774

Team, Stan Development. 2021. Stan Modeling Language Users Guide and Reference Manual, 2.28.1.775

Ushey, Kevin. 2021. Renv: Project Environments. https://rstudio.github.io/renv/.776

Vernon, Ian, Michael Goldstein, and Richard Bower. 2014. “Galaxy Formation: Bayesian History777

Matching for the Observable Universe.” Stat. Sci. 29 (1): 81–90.778

Williamson, Daniel, Michael Goldstein, Lesley Allison, Adam Blaker, Peter Challenor, Laura Jackson, and779

Kuniko Yamazaki. 2013. “History Matching for Exploring and Reducing Climate Model Parameter780

Space Using Observations and a Large Perturbed Physics Ensemble.” Clim. Dyn. 41 (7): 1703–29.781

https://doi.org/10.1007/s00382-013-1896-4.782

19/19

https://doi.org/10.1016/S2589-7500(22)00148-0
https://doi.org/10.1016/S2589-7500(22)00148-0
https://doi.org/10.1016/S2589-7500(22)00148-0
https://doi.org/10.1371/journal.pcbi.1008651
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-gb/pricing/details/virtual-machines/linux/
https://www.R-project.org/
https://doi.org/10.1016/j.physa.2010.04.029
https://doi.org/10.1016/j.physa.2010.04.029
https://doi.org/10.1016/j.physa.2010.04.029
https://doi.org/10.1016/j.ijforecast.2022.06.005
https://doi.org/10.1016/j.ijforecast.2022.06.005
https://doi.org/10.1016/j.ijforecast.2022.06.005
https://doi.org/10.2105/ajph.2022.306831
https://doi.org/10.2105/ajph.2022.306831
https://doi.org/10.2105/ajph.2022.306831
https://doi.org/10.1101/2022.06.16.22276024
https://doi.org/10.1101/2022.06.16.22276024
https://doi.org/10.1101/2022.06.16.22276024
https://arxiv.org/abs/2007.05180
https://covid19forecasthub.eu/
https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe
https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe
https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe
https://rstudio.github.io/renv/
https://doi.org/10.1007/s00382-013-1896-4

	Introduction
	Materials and Methods
	Setting of the European COVID-19 Forecast Hub
	Observations based on previous forecasts
	Model
	Assumptions and simplifications
	Definition
	Forecast evaluation
	Implementation
	Results
	Summary of the European COVID-19 Forecast Hub Setting
	Forecast evaluation
	Visualisation of forecasts by horizon
	Relative forecast evaluation
	Forecast calibration


	Discussion
	Summary
	Strengths and Weaknesses
	Literature context
	Further work
	Conclusions
	Acknowledgments
	Additional Information and Declarations
	Competing interests
	Author contribution
	Data availability
	Funding

	References














