Skip to contents

contactsurveys is an R package to download contact surveys for use in age-structured infectious disease models. This code was initially in the socialmixr package, but the code for downloading surveys has been moved into this package.

For background on age-specific mixing matrices and what data inform them, see, for example, the paper on POLYMOD by (Mossong et al. 2008).

Usage

contactsurveys provides access to all surveys in the Social contact data community on Zenodo. The available surveys can be listed (if an internet connection is available) with:

list_surveys()
#> Skipping download
#> ℹ Files already exist at
#>   '/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/survey_list.rds'
#>   and `overwrite = FALSE`
#> ℹ Set `overwrite = TRUE` to force a re-download.
#> Key: <date_added>
#>     date_added
#>         <char>
#>  1: 2017-11-07
#>  2: 2017-12-07
#>  3: 2017-12-22
#>  4: 2018-01-23
#>  5: 2018-02-05
#>  6: 2018-06-14
#>  7: 2018-09-05
#>  8: 2019-01-24
#>  9: 2019-08-13
#> 10: 2019-09-16
#> 11: 2020-08-06
#> 12: 2020-09-30
#> 13: 2020-09-30
#> 14: 2020-10-12
#> 15: 2020-10-16
#> 16: 2021-05-06
#> 17: 2021-05-20
#> 18: 2021-05-25
#> 19: 2021-06-07
#> 20: 2021-06-29
#> 21: 2021-06-29
#> 22: 2021-06-29
#> 23: 2021-06-29
#> 24: 2021-06-29
#> 25: 2021-06-29
#> 26: 2021-07-03
#> 27: 2021-07-26
#> 28: 2021-07-26
#> 29: 2021-08-20
#> 30: 2022-04-11
#> 31: 2022-05-10
#> 32: 2022-05-10
#> 33: 2022-05-10
#> 34: 2022-05-10
#> 35: 2022-05-12
#> 36: 2022-05-12
#> 37: 2022-05-12
#> 38: 2022-08-22
#> 39: 2023-03-13
#> 40: 2023-05-24
#> 41: 2023-07-07
#> 42: 2024-03-05
#> 43: 2024-05-08
#> 44: 2024-07-27
#> 45: 2025-01-30
#>     date_added
#>                                                                                           title
#>                                                                                          <char>
#>  1:                                                                 POLYMOD social contact data
#>  2:                                                                Social contact data for Peru
#>  3:                                                            Social contact data for Zimbabwe
#>  4:                                                              Social contact data for France
#>  5:                                                           Social contact data for Hong Kong
#>  6:                                                             Social contact data for Vietnam
#>  7:                                                                  Social contact data for UK
#>  8:                              Social contact data for Zambia and South Africa (CODA dataset)
#>  9:                                                      Social contact data for China mainland
#> 10:                                                              Social contact data for Russia
#> 11:                                                        CoMix social contact data (Belgium )
#> 12:                                                 Social contact data for Belgium (2010-2011)
#> 13:                                                      Social contact data for Belgium (2006)
#> 14:                                     Social contact data before and during COVID-19 in China
#> 15:                                                            Social contact data for Thailand
#> 16:                                                     Social contact data for Thailand (2015)
#> 17:                                                         CoMix social contact data (Austria)
#> 18:                                                     CoMix social contact data (Netherlands)
#> 19:                                                              CoMix social contact data (UK)
#> 20:                                                         CoMix social contact data (Denmark)
#> 21:                                                           CoMix social contact data (Spain)
#> 22:                                                          CoMix social contact data (France)
#> 23:                                                           CoMix social contact data (Italy)
#> 24:                                                        CoMix social contact data (Portugal)
#> 25:                                                          CoMix social contact data (Poland)
#> 26:                                                     Social contact data for the Netherlands
#> 27:                                                          CoMix social contact data (Greece)
#> 28:                                                        CoMix social contact data (Slovenia)
#> 29:                                           Social contact data for IDPs in Somaliland (2019)
#> 30:                                                              Social contact data for Taiwan
#> 31:                                                         CoMix social contact data (Croatia)
#> 32:                                                        CoMix social contact data (Slovakia)
#> 33:                                                         CoMix social contact data (Hungary)
#> 34:                                                         CoMix social contact data (Estonia)
#> 35:                                                       CoMix social contact data (Lithuania)
#> 36:                                                         CoMix social contact data (Finland)
#> 37:                                                     CoMix social contact data (Switzerland)
#> 38:                                                               CoMix 2.0 social contact data
#> 39:                               Contact data of older adults (70+) in the Netherlands in 2021
#> 40:                                                          Household contact survey (Belgium)
#> 41:                                       Contact data of Children in Belgium, Italy and Poland
#> 42:        Contact data of Pienter3 (2016-2017) and PiCo (2020-2023) studies in the Netherlands
#> 43:                                                CoMix data (last round in BE, CH, NL and UK)
#> 44:                           Social contact data for the BHDSS and FWHDSS in the Gambia (2022)
#> 45: Social mixing patterns of United States health care personnel at a quaternary health center
#>                                                                                           title
#>                   creator                                     url
#>                    <char>                                  <char>
#>  1:          Joël Mossong  https://doi.org/10.5281/zenodo.3874557
#>  2:    Carlos G. Grijalva  https://doi.org/10.5281/zenodo.3874805
#>  3:      Alessia Melegaro  https://doi.org/10.5281/zenodo.3886638
#>  4:      Guillaume Béraud  https://doi.org/10.5281/zenodo.3886590
#>  5:          Kathy  Leung  https://doi.org/10.5281/zenodo.3874808
#>  6:           Horby Peter  https://doi.org/10.5281/zenodo.3874802
#>  7:   Albert Jan van Hoek  https://doi.org/10.5281/zenodo.3874717
#>  8:         Peter J. Dodd  https://doi.org/10.5281/zenodo.3874675
#>  9:       Zhang, Juanjuan  https://doi.org/10.5281/zenodo.3878754
#> 10:       Maria Litvinova  https://doi.org/10.5281/zenodo.3874674
#> 11:        Pietro Coletti https://doi.org/10.5281/zenodo.10549953
#> 12:         Willem Lander  https://doi.org/10.5281/zenodo.4302055
#> 13:             Hens Niel  https://doi.org/10.5281/zenodo.4059864
#> 14:        Zhang Juanjuan  https://doi.org/10.5281/zenodo.7326686
#> 15:        Mahikul Wiriya  https://doi.org/10.5281/zenodo.4086739
#> 16:    Weerasak Putthasri  https://doi.org/10.5281/zenodo.4739777
#> 17:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362906
#> 18:       Backer, Jantien  https://doi.org/10.5281/zenodo.7276465
#> 19:            Gimma, Amy https://doi.org/10.5281/zenodo.13684044
#> 20:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362899
#> 21:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362898
#> 22:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362893
#> 23:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362888
#> 24:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362887
#> 25:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362879
#> 26: van de Kassteele, Jan  https://doi.org/10.5281/zenodo.5062244
#> 27:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362870
#> 28:            Gimma, Amy  https://doi.org/10.5281/zenodo.6362865
#> 29:  van Zandvoort, Kevin  https://doi.org/10.5281/zenodo.7071876
#> 30:         Fu, Yang-Chih  https://doi.org/10.5281/zenodo.6385759
#> 31:            Gimma, Amy  https://doi.org/10.5281/zenodo.7257433
#> 32:            Gimma, Amy  https://doi.org/10.5281/zenodo.6535357
#> 33:            Gimma, Amy  https://doi.org/10.5281/zenodo.6535344
#> 34:            Gimma, Amy  https://doi.org/10.5281/zenodo.6535313
#> 35:            Gimma, Amy  https://doi.org/10.5281/zenodo.6542668
#> 36:            Gimma, Amy  https://doi.org/10.5281/zenodo.6542664
#> 37:            Gimma, Amy  https://doi.org/10.5281/zenodo.6542657
#> 38:       Coletti, Pietro  https://doi.org/10.5281/zenodo.7331926
#> 39:     Jantien A. Backer  https://doi.org/10.5281/zenodo.7751724
#> 40:      Goeyvaerts, Nele  https://doi.org/10.5281/zenodo.7965594
#> 41:        Coletti,Pietro  https://doi.org/10.5281/zenodo.8123632
#> 42:       Backer, Jantien https://doi.org/10.5281/zenodo.10370353
#> 43:   Jarvis, Christopher https://doi.org/10.5281/zenodo.11154066
#> 44:           Osei, Isaac https://doi.org/10.5281/zenodo.13101862
#> 45:       Pischel, Lauren https://doi.org/10.5281/zenodo.14156576
#>                   creator                                     url

By default, the survey data from list_surveys() is effectively cached, so it will run very quickly the next time you run it. This data will also persist across R sessions.

To expand on this, the downloads in this package are downloaded to a default location specified by contactsurveys_dir(), which uses tools::R_user_dir() under the hood to find an appropriate place to write files. You can also control where files are saved by setting an environment variable, CONTACTSURVEYS_HOME. See ?Sys.setenv() or ?Renviron for more detail.

Surveys can be downloaded using download_survey(). This will get the relevant data of a survey given its Zenodo DOI (as returned by list_surveys()).

polymod_doi <- "https://doi.org/10.5281/zenodo.3874557"
polymod_survey_files <- download_survey(polymod_doi)
#> Fetching contact survey filenames from: https://doi.org/10.5281/zenodo.3874557.
#> ℹ Successfully fetched list of published records - page 1
#> 
#> ✔ Successfully fetched list of published records!
#> 
#> ✔ Successfully fetched record for DOI '10.5281/zenodo.3874557'!
#> 
#> Downloading from https://doi.org/10.5281/zenodo.3874557.
#> ! Overwrite is 'false', aborting download of existing files
#> 
#> ℹ Download in sequential mode
#> [zen4R][INFO] ZenodoRecord - Download in sequential mode
#> ℹ Will download 7 files from record '3874557' (doi: '10.5281/zenodo.3874557') - total size: 7.4 MiB
#> [zen4R][INFO] ZenodoRecord - Will download 7 files from record '3874557' (doi: '10.5281/zenodo.3874557') - total size: 7.4 MiB
#> ℹ Downloading file '2008_Mossong_POLYMOD_hh_common.csv' - size: 120 KiB
#> [zen4R][INFO] Downloading file '2008_Mossong_POLYMOD_hh_common.csv' - size: 120 KiB
#> ℹ Downloading file '2008_Mossong_POLYMOD_contact_common.csv' - size: 6.2 MiB
#> [zen4R][INFO] Downloading file '2008_Mossong_POLYMOD_contact_common.csv' - size: 6.2 MiB
#> ℹ Downloading file '2008_Mossong_POLYMOD_dictionary.xls' - size: 41 KiB
#> [zen4R][INFO] Downloading file '2008_Mossong_POLYMOD_dictionary.xls' - size: 41 KiB
#> ℹ Downloading file '2008_Mossong_POLYMOD_hh_extra.csv' - size: 523 KiB
#> [zen4R][INFO] Downloading file '2008_Mossong_POLYMOD_hh_extra.csv' - size: 523 KiB
#> ℹ Downloading file '2008_Mossong_POLYMOD_participant_common.csv' - size: 153.1 KiB
#> [zen4R][INFO] Downloading file '2008_Mossong_POLYMOD_participant_common.csv' - size: 153.1 KiB
#> ℹ Downloading file '2008_Mossong_POLYMOD_participant_extra.csv' - size: 221.8 KiB
#> [zen4R][INFO] Downloading file '2008_Mossong_POLYMOD_participant_extra.csv' - size: 221.8 KiB
#> ℹ Downloading file '2008_Mossong_POLYMOD_sday.csv' - size: 188.7 KiB
#> [zen4R][INFO] Downloading file '2008_Mossong_POLYMOD_sday.csv' - size: 188.7 KiB
#> ℹ Files downloaded at '/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557'.
#> [zen4R][INFO] Files downloaded at '/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557'.
#> ℹ Verifying file integrity...
#> [zen4R][INFO] ZenodoRecord - Verifying file integrity...
#> ℹ File '2008_Mossong_POLYMOD_hh_common.csv': integrity verified (md5sum: d7fb1359ad84dba8cce4c444063940aa)
#> [zen4R][INFO] File '2008_Mossong_POLYMOD_hh_common.csv': integrity verified (md5sum: d7fb1359ad84dba8cce4c444063940aa)
#> ℹ File '2008_Mossong_POLYMOD_contact_common.csv': integrity verified (md5sum: 52baf32033bf780786fae6604043ec00)
#> [zen4R][INFO] File '2008_Mossong_POLYMOD_contact_common.csv': integrity verified (md5sum: 52baf32033bf780786fae6604043ec00)
#> ℹ File '2008_Mossong_POLYMOD_dictionary.xls': integrity verified (md5sum: 06415516c91b52dedfaa53622e352647)
#> [zen4R][INFO] File '2008_Mossong_POLYMOD_dictionary.xls': integrity verified (md5sum: 06415516c91b52dedfaa53622e352647)
#> ℹ File '2008_Mossong_POLYMOD_hh_extra.csv': integrity verified (md5sum: b0063f8d1a4f391d919495493611b3f1)
#> [zen4R][INFO] File '2008_Mossong_POLYMOD_hh_extra.csv': integrity verified (md5sum: b0063f8d1a4f391d919495493611b3f1)
#> ℹ File '2008_Mossong_POLYMOD_participant_common.csv': integrity verified (md5sum: ac784c281a71e15c7e64eaf2d6365709)
#> [zen4R][INFO] File '2008_Mossong_POLYMOD_participant_common.csv': integrity verified (md5sum: ac784c281a71e15c7e64eaf2d6365709)
#> ℹ File '2008_Mossong_POLYMOD_participant_extra.csv': integrity verified (md5sum: 4e2dd8d6ba2d23bb5b1f236be215b936)
#> [zen4R][INFO] File '2008_Mossong_POLYMOD_participant_extra.csv': integrity verified (md5sum: 4e2dd8d6ba2d23bb5b1f236be215b936)
#> ℹ File '2008_Mossong_POLYMOD_sday.csv': integrity verified (md5sum: 148c5fc86ca10d385e3d047014e14a09)
#> [zen4R][INFO] File '2008_Mossong_POLYMOD_sday.csv': integrity verified (md5sum: 148c5fc86ca10d385e3d047014e14a09)
#> ✔ End of download
#> [zen4R][INFO] ZenodoRecord - End of download
polymod_survey_files
#> [1] "/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557/2008_Mossong_POLYMOD_contact_common.csv"    
#> [2] "/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557/2008_Mossong_POLYMOD_dictionary.xls"        
#> [3] "/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557/2008_Mossong_POLYMOD_hh_common.csv"         
#> [4] "/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557/2008_Mossong_POLYMOD_hh_extra.csv"          
#> [5] "/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557/2008_Mossong_POLYMOD_participant_common.csv"
#> [6] "/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557/2008_Mossong_POLYMOD_participant_extra.csv" 
#> [7] "/Users/nick_1/Library/Application Support/org.R-project.R/R/contactsurveys/zenodo.3874557/2008_Mossong_POLYMOD_sday.csv"

A reference for any given survey can be obtained by passing a DOI to get_citation():

get_citation(polymod_doi)
#> 
ℹ Fetching citation

✔ Citation fetched! [2.3s]
#> @dataset{joel_mossong_2020_3874557,
#>   author       = {Joël Mossong and
#>                   Niel Hens and
#>                   Mark Jit and
#>                   Philippe Beutels and
#>                   Kari Auranen and
#>                   Rafael Mikolajczyk and
#>                   Marco Massari and
#>                   Stefania Salmaso and
#>                   Gianpaolo Scalia Tomba and
#>                   Jacco Wallinga and
#>                   Janneke Heijne and
#>                   Malgorzata Sadkowska-Todys and
#>                   Magdalena Rosinska and
#>                   W. John Edmunds},
#>   title        = {POLYMOD social contact data},
#>   month        = jun,
#>   year         = 2020,
#>   publisher    = {Zenodo},
#>   version      = 2,
#>   doi          = {10.5281/zenodo.3874557},
#>   url          = {https://doi.org/10.5281/zenodo.3874557},
#> }

Using contact matrices with socialmixr

You can then use the survey files downloaded with functions from socialmixr, load_survey() and contact_matrix():

library(socialmixr) # nolint
#> 
#> Attaching package: 'socialmixr'
#> The following objects are masked from 'package:contactsurveys':
#> 
#>     download_survey, get_citation, list_surveys
#> The following object is masked from 'package:devtools':
#> 
#>     check
polymod_loaded <- load_survey(polymod_survey_files)
#> Warning: No reference provided.
uk_contact_matrix <- contact_matrix(
  polymod_loaded,
  countries = "United Kingdom",
  age.limits = c(0, 18, 65)
)
#> Removing participants that have contacts without age information.
#> ℹ To change this behaviour, set the 'missing.contact.age' option.

uk_contact_matrix
#> $matrix
#>          contact.age.group
#> age.group   [0,18)  [18,65)       65+
#>   [0,18)  7.813187 5.505495 0.2664835
#>   [18,65) 2.103215 8.174281 0.6463621
#>   65+     1.160714 5.464286 1.7142857
#> 
#> $participants
#>    age.group participants proportion
#>       <char>        <int>      <num>
#> 1:    [0,18)          364  0.3600396
#> 2:   [18,65)          591  0.5845697
#> 3:       65+           56  0.0553907

References

Mossong, Joël, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari, et al. 2008. “Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases.” PLOS Medicine 5 (3): e74. https://doi.org/10.1371/journal.pmed.0050074.