Run a single instance of the branching process model
outbreak_model(
num.initial.cases = NULL,
prop.ascertain = NULL,
cap_max_days = NULL,
cap_cases = NULL,
r0isolated = NULL,
r0community = NULL,
r0subclin = NULL,
disp.iso = NULL,
disp.com = NULL,
disp.subclin = NULL,
k,
delay_shape = NULL,
delay_scale = NULL,
prop.asym = NULL,
quarantine = NULL
)
a nonnegative integer
scalar: number of initial
or starting cases which are all assumed to be missed.
a nonnegative numeric
scalar: proportion of
infectious contacts ascertained by contact tracing (must be 0<=x<=1)
a positive integer
scalar: stop the simulation when
this many days is reached.
a positive integer
scalar: number of cumulative cases at
which the branching process (simulation) was terminated
a positive numeric
scalar: reproduction number for
isolated cases (must be >0)
a positive numeric
scalar: reproduction number for
non-isolated cases (must be >0)
a positive numeric
scalar: reproduction number for
sub-clinical non-isolated cases (must be >0)
a positive numeric
scalar: dispersion parameter for
isolated cases (must be >0)
a positive numeric
scalar: dispersion parameter for
non-isolated cases (must be >0)
a positive numeric
scalar: dispersion parameter for
sub-clincial non-isolated cases (must be >0)
a numeric
scalar: skew parameter for sampling the serial
interval from the incubation period
a positive numeric
scalar: shape parameter of delay
distribution
a positive numeric
scalar: scale parameter of delay
distribution
a nonnegative numeric
scalar: proportion of cases that
are completely asymptomatic (sublinical) (between 0 and 1)
a logical
scalar: whether quarantine is in effect, if
TRUE
then traced contacts are isolated before symptom onset
data.table
of cases by week, cumulative cases, and the effective
reproduction number of the outbreak. data.table
columns are:
$week
: numeric
$weekly_cases
: numeric
$cumulative
: numeric
$effective_r0
: numeric
$cases_per_gen
: list
set.seed(1)
out <- outbreak_model(
num.initial.cases = 1,
prop.ascertain = 0.2,
cap_max_days = 350,
cap_cases = 4500,
r0isolated = 0.5,
r0community = 2.5,
r0subclin = 2.5,
disp.iso = 1,
disp.com = 0.16,
disp.subclin = 0.16,
k = 0,
delay_shape = 1.65,
delay_scale = 4.28,
prop.asym = 0,
quarantine = FALSE
)
out
#> week weekly_cases cumulative effective_r0 cases_per_gen
#> <num> <num> <num> <num> <list>
#> 1: 0 0 0 1 2,0
#> 2: 1 3 3 1 2,0
#> 3: 2 0 3 1 2,0
#> 4: 3 0 3 1 2,0
#> 5: 4 0 3 1 2,0
#> 6: 5 0 3 1 2,0
#> 7: 6 0 3 1 2,0
#> 8: 7 0 3 1 2,0
#> 9: 8 0 3 1 2,0
#> 10: 9 0 3 1 2,0
#> 11: 10 0 3 1 2,0
#> 12: 11 0 3 1 2,0
#> 13: 12 0 3 1 2,0
#> 14: 13 0 3 1 2,0
#> 15: 14 0 3 1 2,0
#> 16: 15 0 3 1 2,0
#> 17: 16 0 3 1 2,0
#> 18: 17 0 3 1 2,0
#> 19: 18 0 3 1 2,0
#> 20: 19 0 3 1 2,0
#> 21: 20 0 3 1 2,0
#> 22: 21 0 3 1 2,0
#> 23: 22 0 3 1 2,0
#> 24: 23 0 3 1 2,0
#> 25: 24 0 3 1 2,0
#> 26: 25 0 3 1 2,0
#> 27: 26 0 3 1 2,0
#> 28: 27 0 3 1 2,0
#> 29: 28 0 3 1 2,0
#> 30: 29 0 3 1 2,0
#> 31: 30 0 3 1 2,0
#> 32: 31 0 3 1 2,0
#> 33: 32 0 3 1 2,0
#> 34: 33 0 3 1 2,0
#> 35: 34 0 3 1 2,0
#> 36: 35 0 3 1 2,0
#> 37: 36 0 3 1 2,0
#> 38: 37 0 3 1 2,0
#> 39: 38 0 3 1 2,0
#> 40: 39 0 3 1 2,0
#> 41: 40 0 3 1 2,0
#> 42: 41 0 3 1 2,0
#> 43: 42 0 3 1 2,0
#> 44: 43 0 3 1 2,0
#> 45: 44 0 3 1 2,0
#> 46: 45 0 3 1 2,0
#> 47: 46 0 3 1 2,0
#> 48: 47 0 3 1 2,0
#> 49: 48 0 3 1 2,0
#> 50: 49 0 3 1 2,0
#> 51: 50 0 3 1 2,0
#> week weekly_cases cumulative effective_r0 cases_per_gen