Set up initial cases for branching process
Arguments
- initial_cases
a non-negative
integerscalar: number of initial or starting cases which are all assumed to be missed.- delays
a
listwith class<ringbp_delay_opts>: the delay distributionfunctions for the ringbp model, returned bydelay_opts(). Contains two elements:incubation_periodandonset_to_isolation- event_probs
a
listwith class<ringbp_event_prob_opts>: the event probabilities for the ringbp model, returned byevent_prob_opts(). Contains three elements:asymptomatic,presymptomatic_transmissionandsymptomatic_ascertained
Value
data.table of cases in outbreak so far. data.table columns are:
$exposure:numeric$asymptomatic:logical$caseid:integer$infector:numeric$missed:logical$onset:numeric$new_cases:integer$isolated_time:numeric$sampled:logical
Examples
delays <- delay_opts(
incubation_period = \(n) rweibull(n = n, shape = 2.32, scale = 6.49),
onset_to_isolation = \(n) rweibull(n = n, shape = 1.65, scale = 4.28)
)
event_probs <- event_prob_opts(
asymptomatic = 0,
presymptomatic_transmission = 0.15,
symptomatic_ascertained = 0
)
# generate initial cases
case_data <- outbreak_setup(
initial_cases = 5,
delays = delays,
event_probs = event_probs
)
case_data
#> Index: <asymptomatic>
#> exposure asymptomatic caseid infector missed onset new_cases
#> <num> <lgcl> <int> <num> <lgcl> <num> <int>
#> 1: 0 FALSE 1 0 TRUE 5.494867 NA
#> 2: 0 FALSE 2 0 TRUE 4.273768 NA
#> 3: 0 FALSE 3 0 TRUE 9.144926 NA
#> 4: 0 FALSE 4 0 TRUE 4.549269 NA
#> 5: 0 FALSE 5 0 TRUE 5.327302 NA
#> isolated_time sampled
#> <num> <lgcl>
#> 1: 13.630713 FALSE
#> 2: 12.000550 FALSE
#> 3: 9.839796 FALSE
#> 4: 7.850404 FALSE
#> 5: 7.479154 FALSE