R/scenario_sim.R
scenario_sim.Rd
Run a specified number of simulations with identical parameters
scenario_sim(
n.sim,
prop.ascertain,
cap_max_days,
cap_cases,
r0isolated,
r0community,
disp.iso,
disp.com,
k,
delay_shape,
delay_scale,
num.initial.cases,
prop.asym,
quarantine,
r0subclin = NULL,
disp.subclin = NULL
)
a positive integer
scalar: number of simulations to run
a nonnegative numeric
scalar: proportion of
infectious contacts ascertained by contact tracing (must be 0<=x<=1)
a positive integer
scalar: stop the simulation when
this many days is reached.
a positive integer
scalar: number of cumulative cases at
which the branching process (simulation) was terminated
a positive numeric
scalar: reproduction number for
isolated cases (must be >0)
a positive numeric
scalar: reproduction number for
non-isolated cases (must be >0)
a positive numeric
scalar: dispersion parameter for
isolated cases (must be >0)
a positive numeric
scalar: dispersion parameter for
non-isolated cases (must be >0)
a numeric
scalar: skew parameter for sampling the serial
interval from the incubation period
a positive numeric
scalar: shape parameter of delay
distribution
a positive numeric
scalar: scale parameter of delay
distribution
a nonnegative integer
scalar: number of initial
or starting cases which are all assumed to be missed.
a nonnegative numeric
scalar: proportion of cases that
are completely asymptomatic (sublinical) (between 0 and 1)
a logical
scalar: whether quarantine is in effect, if
TRUE
then traced contacts are isolated before symptom onset
a positive numeric
scalar: reproduction number for
sub-clinical non-isolated cases (must be >0)
a positive numeric
scalar: dispersion parameter for
sub-clincial non-isolated cases (must be >0)
A data.table
object returning the results for multiple simulations using
the same set of parameters. The table has columns
week: The week in the simulation.
weekly_cases: The number of new cases that week.
cumulative: The cumulative cases.
effective_r0: The effective reproduction rate for the whole simulation
cases_per_gen: A list column with the cases per generation. This is repeated each row.
sim: Index column for which simulation.
res <- scenario_sim(
n.sim = 5,
num.initial.cases = 5,
cap_max_days = 365,
cap_cases = 2000,
r0isolated = 0,
r0community = 2.5,
disp.iso = 1,
disp.com = 0.16,
k = 0.7,
delay_shape = 2.5,
delay_scale = 5,
prop.asym = 0,
prop.ascertain = 0
)
res
#> week weekly_cases cumulative effective_r0 cases_per_gen sim
#> <num> <num> <num> <num> <list> <int>
#> 1: 0 5 5 0.0 0 1
#> 2: 1 0 5 0.0 0 1
#> 3: 2 0 5 0.0 0 1
#> 4: 3 0 5 0.0 0 1
#> 5: 4 0 5 0.0 0 1
#> ---
#> 261: 48 0 8 0.3 3,0 5
#> 262: 49 0 8 0.3 3,0 5
#> 263: 50 0 8 0.3 3,0 5
#> 264: 51 0 8 0.3 3,0 5
#> 265: 52 0 8 0.3 3,0 5