Generates a list of arguments as required by
rstan::sampling
or rstan::vb
by combining the required options,
with data, and type of initialisation. Initialisation defaults to random but it is expected that create_initial_conditions
will be used.
create_stan_args(
stan = stan_opts(),
data = NULL,
init = "random",
verbose = FALSE
)
A list of stan options as generated by stan_opts()
. Defaults to stan_opts()
. Can be used to override
data
, init
, and verbose
settings if desired.
A list of stan data as created by create_stan_data
Initial conditions passed to rstan
. Defaults to "random" but can also be a function (
as supplied by create_intitial_conditions
).
Logical, defaults to FALSE
. Should verbose progress messages be returned.
A list of stan arguments
# default settings
create_stan_args()
#> $data
#> NULL
#>
#> $init
#> [1] "random"
#>
#> $refresh
#> [1] 0
#>
#> $object
#> S4 class stanmodel 'estimate_infections' coded as follows:
#> functions {
#>
#> // discretised truncated gamma pmf
#> vector discretised_gamma_pmf(int[] y, real mu, real sigma, int max_val) {
#> int n = num_elements(y);
#> vector[n] pmf;
#> real trunc_pmf;
#> // calculate alpha and beta for gamma distribution
#> real small = 1e-5;
#> real large = 1e8;
#> real c_sigma = fmax(small, sigma);
#> real c_mu = fmax(small, mu);
#> real alpha = ((c_mu) / c_sigma)^2;
#> real beta = (c_mu) / (c_sigma^2);
#> // account for numerical issues
#> alpha = fmax(small, alpha);
#> alpha = fmin(large, alpha);
#> beta = fmax(small, beta);
#> beta = fmin(large, beta);
#> // calculate pmf
#> trunc_pmf = gamma_cdf(max_val + 1, alpha, beta) - gamma_cdf(1, alpha, beta);
#> for (i in 1:n){
#> pmf[i] = (gamma_cdf(y[i] + 1, alpha, beta) - gamma_cdf(y[i], alpha, beta)) /
#> trunc_pmf;
#> }
#> return(pmf);
#> }
#>
#> // discretised truncated lognormal pmf
#> vector discretised_lognormal_pmf(int[] y, real mu, real sigma, int max_val) {
#> int n = num_elements(y);
#> vector[n] pmf;
#> real small = 1e-5;
#> real c_sigma = fmax(small, sigma);
#> real c_mu = fmax(small, mu);
#> vector[n] adj_y = to_vector(y) + small;
#> vector[n] upper_y = (log(adj_y + 1) - c_mu) / c_sigma;
#> vector[n] lower_y = (log(adj_y) - c_mu) / c_sigma;
#> real max_cdf = normal_cdf((log(max_val + small) - c_mu) / c_sigma, 0.0, 1.0);
#> real min_cdf = normal_cdf((log(small) - c_mu) / c_sigma, 0.0, 1.0);
#> real trunc_cdf = max_cdf - min_cdf;
#> for (i in 1:n) {
#> pmf[i] = (normal_cdf(upper_y[i], 0.0, 1.0) - normal_cdf(lower_y[i], 0.0, 1.0)) /
#> trunc_cdf;
#> }
#> return(pmf);
#> }
#>
#> // reverse a mf
#> vector reverse_mf(vector pmf, int max_pmf) {
#> vector[max_pmf] rev_pmf;
#> for (d in 1:max_pmf) {
#> rev_pmf[d] = pmf[max_pmf - d + 1];
#> }
#> return rev_pmf;
#> }
#>
#> // discretised truncated gamma pmf
#> vector discretised_delta_pmf(int[] y) {
#> int n = num_elements(y);
#> vector[n] pmf;
#> pmf[y[1]] = 1;
#> if (n > 1) {
#> for (i in 2:n) {
#> pmf[y[i]] = 0;
#> }
#> }
#> return(pmf);
#> }
#>
#> // convolve a pdf and case vector
#> vector convolve(vector cases, vector rev_pmf) {
#> int t = num_elements(cases);
#> int max_pmf = num_elements(rev_pmf);
#> vector[t] conv_cases = rep_vector(1e-5, t);
#> for (s in 1:t) {
#> conv_cases[s] += dot_product(cases[max(1, (s - max_pmf + 1)):s],
#> tail(rev_pmf, min(max_pmf, s)));
#> }
#> return(conv_cases);
#> }
#>
#>
#> // convolve latent infections to reported (but still unobserved) cases
#> vector convolve_to_report(vector infections,
#> real[] delay_mean,
#> real[] delay_sd,
#> int[] max_delay,
#> int seeding_time) {
#> int t = num_elements(infections);
#> vector[t - seeding_time] reports;
#> vector[t] unobs_reports = infections;
#> int delays = num_elements(delay_mean);
#> if (delays) {
#> for (s in 1:delays) {
#> vector[max_delay[s]] pmf = rep_vector(1e-5, max_delay[s]);
#> int delay_indexes[max_delay[s]];
#> for (i in 1:max_delay[s]) {
#> delay_indexes[i] = max_delay[s] - i;
#> }
#> pmf = pmf + discretised_lognormal_pmf(delay_indexes, delay_mean[s],
#> delay_sd[s], max_delay[s]);
#> unobs_reports = convolve(unobs_reports, pmf);
#> }
#> reports = unobs_reports[(seeding_time + 1):t];
#> }else{
#> reports = infections[(seeding_time + 1):t];
#> }
#> return(reports);
#> }
#>
#> void delays_lp(real[] delay_mean, real[] delay_mean_mean, real[] delay_mean_sd,
#> real[] delay_sd, real[] delay_sd_mean, real[] delay_sd_sd, int weight){
#> int delays = num_elements(delay_mean);
#> if (delays) {
#> for (s in 1:delays) {
#> target += normal_lpdf(delay_mean[s] | delay_mean_mean[s], delay_mean_sd[s]) * weight;
#> target += normal_lpdf(delay_sd[s] | delay_sd_mean[s], delay_sd_sd[s]) * weight;
#> }
#> }
#> }
#>
#> // eigenvalues for approximate hilbert space gp
#> // see here for details: https://arxiv.org/pdf/2004.11408.pdf
#> real lambda(real L, int m) {
#> real lam;
#> lam = ((m*pi())/(2*L))^2;
#> return lam;
#> }
#> // eigenfunction for approximate hilbert space gp
#> // see here for details: https://arxiv.org/pdf/2004.11408.pdf
#> vector phi(real L, int m, vector x) {
#> vector[rows(x)] fi;
#> fi = 1/sqrt(L) * sin(m*pi()/(2*L) * (x+L));
#> return fi;
#> }
#> // spectral density of the exponential quadratic kernal
#> real spd_se(real alpha, real rho, real w) {
#> real S;
#> S = (alpha^2) * sqrt(2*pi()) * rho * exp(-0.5*(rho^2)*(w^2));
#> return S;
#> }
#> // spectral density of the Matern 3/2 kernel
#> real spd_matern(real alpha, real rho, real w) {
#> real S;
#> S = 4*alpha^2 * (sqrt(3)/rho)^3 * 1/((sqrt(3)/rho)^2 + w^2)^2;
#> return S;
#> }
#> // setup gaussian process noise dimensions
#> int setup_noise(int ot_h, int t, int horizon, int estimate_r,
#> int stationary, int future_fixed, int fixed_from) {
#> int noise_time = estimate_r > 0 ? (stationary > 0 ? ot_h : ot_h - 1) : t;
#> int noise_terms = future_fixed > 0 ? (noise_time - horizon + fixed_from) : noise_time;
#> return(noise_terms);
#> }
#> // setup approximate gaussian process
#> matrix setup_gp(int M, real L, int dimension) {
#> vector[dimension] time;
#> matrix[dimension, M] PHI;
#> real half_dim = dimension / 2.0;
#> for (s in 1:dimension) {
#> time[s] = (s - half_dim) / half_dim;
#> }
#> for (m in 1:M){
#> PHI[,m] = phi(L, m, time);
#> }
#> return(PHI);
#> }
#> // update gaussian process using spectral densities
#> vector update_gp(matrix PHI, int M, real L, real alpha,
#> real rho, vector eta, int type) {
#> vector[M] diagSPD; // spectral density
#> vector[M] SPD_eta; // spectral density * noise
#> int noise_terms = rows(PHI);
#> vector[noise_terms] noise = rep_vector(1e-6, noise_terms);
#> real unit_rho = rho / noise_terms;
#> // GP in noise - spectral densities
#> if (type == 0) {
#> for(m in 1:M){
#> diagSPD[m] = sqrt(spd_se(alpha, unit_rho, sqrt(lambda(L, m))));
#> }
#> }else if (type == 1) {
#> for(m in 1:M){
#> diagSPD[m] = sqrt(spd_matern(alpha, unit_rho, sqrt(lambda(L, m))));
#> }
#> }
#> SPD_eta = diagSPD .* eta;
#> noise = noise + PHI[,] * SPD_eta;
#> return(noise);
#> }
#> // priors for gaussian process
#> void gaussian_process_lp(real rho, real alpha, vector eta,
#> real ls_meanlog, real ls_sdlog,
#> real ls_min, real ls_max, real alpha_sd) {
#> if (ls_sdlog > 0) {
#> rho ~ lognormal(ls_meanlog, ls_sdlog) T[ls_min, ls_max];
#> } else {
#> rho ~ inv_gamma(1.499007, 0.057277 * ls_max) T[ls_min, ls_max];
#> }
#> alpha ~ normal(0, alpha_sd);
#> eta ~ std_normal();
#> }
#>
#> // update a vector of Rts
#> vector update_Rt(vector input_R, real log_R, vector noise, int[] bps,
#> real[] bp_effects, int stationary) {
#> // define control parameters
#> int t = num_elements(input_R);
#> int bp_n = num_elements(bp_effects);
#> int bp_c = 0;
#> int gp_n = num_elements(noise);
#> // define result vectors
#> vector[t] bp = rep_vector(0, t);
#> vector[t] gp = rep_vector(0, t);
#> vector[t] R;
#> // initialise breakpoints
#> if (bp_n) {
#> for (s in 1:t) {
#> if (bps[s]) {
#> bp_c += bps[s];
#> bp[s] = bp_effects[bp_c];
#> }
#> }
#> bp = cumulative_sum(bp);
#> }
#> //initialise gaussian process
#> if (gp_n) {
#> if (stationary) {
#> gp[1:gp_n] = noise;
#> // fix future gp based on last estimated
#> if (t > gp_n) {
#> gp[(gp_n + 1):t] = rep_vector(noise[gp_n], t - gp_n);
#> }
#> }else{
#> gp[2:(gp_n + 1)] = noise;
#> gp = cumulative_sum(gp);
#> }
#> }
#> // Calculate Rt
#> R = rep_vector(log_R, t) + bp + gp;
#> R = exp(R);
#> return(R);
#> }
#> // Rt priors
#> void rt_lp(vector log_R, real[] initial_infections, real[] initial_growth,
#> real[] bp_effects, real[] bp_sd, int bp_n, int seeding_time,
#> real r_logmean, real r_logsd, real prior_infections,
#> real prior_growth) {
#> // prior on R
#> log_R ~ normal(r_logmean, r_logsd);
#> //breakpoint effects on Rt
#> if (bp_n > 0) {
#> bp_sd[1] ~ normal(0, 0.1) T[0,];
#> bp_effects ~ normal(0, bp_sd[1]);
#> }
#> // initial infections
#> initial_infections ~ normal(prior_infections, 0.2);
#> if (seeding_time > 1) {
#> initial_growth ~ normal(prior_growth, 0.2);
#> }
#> }
#>
#> // calculate infectiousness (weighted sum of the generation time and infections)
#> // for a single time point
#> real update_infectiousness(vector infections, vector gt_pmf,
#> int seeding_time, int max_gt, int index){
#> // work out where to start the convolution of past infections with the
#> // generation time distribution: (current_time - maximal generation time) if
#> // that is >= 1, otherwise 1
#> int inf_start = max(1, (index + seeding_time - max_gt));
#> // work out where to end the convolution: (current_time - 1)
#> int inf_end = (index + seeding_time - 1);
#> // number of indices of the generation time to sum over (inf_end - inf_start + 1)
#> int pmf_accessed = min(max_gt, index + seeding_time - 1);
#> // calculate the elements of the convolution
#> real new_inf = dot_product(infections[inf_start:inf_end], tail(gt_pmf, pmf_accessed));
#> return(new_inf);
#> }
#> // generate infections by using Rt = Rt-1 * sum(reversed generation time pmf * infections)
#> vector generate_infections(vector oR, int uot,
#> real gt_mean, real gt_sd, int max_gt,
#> real[] initial_infections, real[] initial_growth,
#> int pop, int ht) {
#> // time indices and storage
#> int ot = num_elements(oR);
#> int nht = ot - ht;
#> int t = ot + uot;
#> vector[ot] R = oR;
#> real exp_adj_Rt;
#> vector[t] infections = rep_vector(1e-5, t);
#> vector[ot] cum_infections = rep_vector(0, ot);
#> vector[ot] infectiousness = rep_vector(1e-5, ot);
#> // generation time pmf
#> vector[max_gt] gt_pmf = rep_vector(1e-5, max_gt);
#> // revert indices (this is for later doing the convolution with recent cases)
#> int gt_indexes[max_gt];
#> for (i in 1:(max_gt)) {
#> gt_indexes[i] = max_gt - i + 1;
#> }
#> if (gt_sd > 0) {
#> // SD > 0: use discretised gamma
#> gt_pmf = gt_pmf + discretised_gamma_pmf(gt_indexes, gt_mean, gt_sd, max_gt);
#> } else {
#> // SD == 0: use discretised delta
#> gt_pmf = gt_pmf + discretised_delta_pmf(gt_indexes);
#> }
#> // Initialise infections using daily growth
#> infections[1] = exp(initial_infections[1]);
#> if (uot > 1) {
#> for (s in 2:uot) {
#> infections[s] = exp(initial_infections[1] + initial_growth[1] * (s - 1));
#> }
#> }
#> // calculate cumulative infections
#> if (pop) {
#> cum_infections[1] = sum(infections[1:uot]);
#> }
#> // iteratively update infections
#> for (s in 1:ot) {
#> infectiousness[s] += update_infectiousness(infections, gt_pmf, uot, max_gt, s);
#> if (pop && s > nht) {
#> exp_adj_Rt = exp(-R[s] * infectiousness[s] / (pop - cum_infections[nht]));
#> exp_adj_Rt = exp_adj_Rt > 1 ? 1 : exp_adj_Rt;
#> infections[s + uot] = (pop - cum_infections[s]) * (1 - exp_adj_Rt);
#> }else{
#> infections[s + uot] += R[s] * infectiousness[s];
#> }
#> if (pop && s < ot) {
#> cum_infections[s + 1] = cum_infections[s] + infections[s + uot];
#> }
#> }
#> return(infections);
#> }
#> // backcalculate infections using mean shifted cases and non-parametric noise
#> vector deconvolve_infections(vector shifted_cases, vector noise, int fixed,
#> int prior) {
#> int t = num_elements(shifted_cases);
#> vector[t] infections = rep_vector(1e-5, t);
#> if(!fixed) {
#> vector[t] exp_noise = exp(noise);
#> if (prior == 1) {
#> infections = infections + shifted_cases .* exp_noise;
#> }else if (prior == 0) {
#> infections = infections + exp_noise;
#> }else if (prior == 2) {
#> infections[1] = infections[1] + shifted_cases[1] * exp_noise[1];
#> for (i in 2:t) {
#> infections[i] = infections[i - 1] * exp_noise[i];
#> }
#> }
#> }else{
#> infections = infections + shifted_cases;
#> }
#> return(infections);
#> }
#> // Update the log density for the generation time distribution mean and sd
#> void generation_time_lp(real[] gt_mean, real gt_mean_mean, real gt_mean_sd,
#> real[] gt_sd, real gt_sd_mean, real gt_sd_sd, int weight) {
#> if (gt_mean_sd > 0) {
#> target += normal_lpdf(gt_mean[1] | gt_mean_mean, gt_mean_sd) * weight;
#> }
#> if (gt_sd_sd > 0) {
#> target += normal_lpdf(gt_sd[1] | gt_sd_mean, gt_sd_sd) * weight;
#> }
#> }
#>
#>
#> // apply day of the week effect
#> vector day_of_week_effect(vector reports, int[] day_of_week, vector effect) {
#> int t = num_elements(reports);
#> int wl = num_elements(effect);
#> // scale day of week effect
#> vector[wl] scaled_effect = wl * effect;
#> vector[t] scaled_reports;
#> for (s in 1:t) {
#> // add reporting effects (adjust for simplex scale)
#> scaled_reports[s] = reports[s] * scaled_effect[day_of_week[s]];
#> }
#> return(scaled_reports);
#> }
#> // Scale observations by fraction reported and update log density of
#> // fraction reported
#> vector scale_obs(vector reports, real frac_obs) {
#> int t = num_elements(reports);
#> vector[t] scaled_reports;
#> scaled_reports = reports * frac_obs;
#> return(scaled_reports);
#> }
#> // Calculate a truncation CMF
#> vector truncation_cmf(real trunc_mean, real trunc_sd, int trunc_max) {
#> int trunc_indexes[trunc_max];
#> vector[trunc_max] cmf;
#> for (i in 1:(trunc_max)) {
#> trunc_indexes[i] = i - 1;
#> }
#> cmf = discretised_lognormal_pmf(trunc_indexes, trunc_mean, trunc_sd, trunc_max);
#> cmf[1] = cmf[1] + 1e-8;
#> cmf = cumulative_sum(cmf);
#> cmf = reverse_mf(cmf, trunc_max);
#> return(cmf);
#> }
#> // Truncate observed data by some truncation distribution
#> vector truncate(vector reports, real[] truncation_mean, real[] truncation_sd,
#> int[] truncation_max, int reconstruct) {
#> int t = num_elements(reports);
#> int truncation = num_elements(truncation_mean);
#> vector[t] trunc_reports = reports;
#> if (truncation) {
#> // Calculate cmf of truncation delay
#> int trunc_max = truncation_max[1] > t ? t : truncation_max[1];
#> int trunc_indexes[trunc_max];
#> vector[trunc_max] cmf;
#> int first_t = t - trunc_max + 1;
#> cmf = truncation_cmf(truncation_mean[1], truncation_sd[1], trunc_max);
#> // Apply cdf of truncation delay to truncation max last entries in reports
#> if (reconstruct) {
#> trunc_reports[first_t:t] = trunc_reports[first_t:t] ./ cmf;
#> }else{
#> trunc_reports[first_t:t] = trunc_reports[first_t:t] .* cmf;
#> }
#> }
#> return(trunc_reports);
#> }
#> // Truncation distribution priors
#> void truncation_lp(real[] truncation_mean, real[] truncation_sd,
#> real[] trunc_mean_mean, real[] trunc_mean_sd,
#> real[] trunc_sd_mean, real[] trunc_sd_sd) {
#> int truncation = num_elements(truncation_mean);
#> if (truncation) {
#> truncation_mean ~ normal(trunc_mean_mean, trunc_mean_sd);
#> truncation_sd ~ normal(trunc_sd_mean, trunc_sd_sd);
#> }
#> }
#> // update log density for reported cases
#> void report_lp(int[] cases, vector reports,
#> real[] rep_phi, real phi_mean, real phi_sd,
#> int model_type, real weight) {
#> real sqrt_phi = 1e5;
#> if (model_type) {
#> // the reciprocal overdispersion parameter (phi)
#> rep_phi[model_type] ~ normal(phi_mean, phi_sd) T[0,];
#> sqrt_phi = 1 / sqrt(rep_phi[model_type]);
#> // defer to poisson if phi is large, to avoid overflow or
#> // if poisson specified
#> }
#> if (sqrt_phi > 1e4) {
#> if (weight == 1) {
#> cases ~ poisson(reports);
#> }else{
#> target += poisson_lpmf(cases | reports) * weight;
#> }
#> } else {
#> if (weight == 1) {
#> cases ~ neg_binomial_2(reports, sqrt_phi);
#> }else{
#> target += neg_binomial_2_lpmf(cases | reports, sqrt_phi);
#> }
#> }
#>
#> }
#> // update log likelihood (as above but not vectorised and returning log likelihood)
#> vector report_log_lik(int[] cases, vector reports,
#> real[] rep_phi, int model_type, real weight) {
#> int t = num_elements(reports);
#> vector[t] log_lik;
#> real sqrt_phi = 1e5;
#> if (model_type) {
#> // the reciprocal overdispersion parameter (phi)
#> sqrt_phi = 1 / sqrt(rep_phi[model_type]);
#> }
#>
#> // defer to poisson if phi is large, to avoid overflow
#> if (sqrt_phi > 1e4) {
#> for (i in 1:t) {
#> log_lik[i] = poisson_lpmf(cases[i] | reports[i]) * weight;
#> }
#> } else {
#> for (i in 1:t) {
#> log_lik[i] = neg_binomial_2_lpmf(cases[i] | reports[i], sqrt_phi) * weight;
#> }
#> }
#> return(log_lik);
#> }
#> // sample reported cases from the observation model
#> int[] report_rng(vector reports, real[] rep_phi, int model_type) {
#> int t = num_elements(reports);
#> int sampled_reports[t];
#> real sqrt_phi = 1e5;
#> if (model_type) {
#> sqrt_phi = 1 / sqrt(rep_phi[model_type]);
#> }
#>
#> for (s in 1:t) {
#> // defer to poisson if phi is large, to avoid overflow
#> if (sqrt_phi > 1e4) {
#> sampled_reports[s] = poisson_rng(reports[s] > 1e8 ? 1e8 : reports[s]);
#> } else {
#> sampled_reports[s] = neg_binomial_2_rng(reports[s] > 1e8 ? 1e8 : reports[s], sqrt_phi);
#> }
#> }
#> return(sampled_reports);
#> }
#>
#> // calculate Rt directly from inferred infections
#> vector calculate_Rt(vector infections, int seeding_time,
#> real gt_mean, real gt_sd, int max_gt,
#> int smooth) {
#> vector[max_gt] gt_pmf;
#> int gt_indexes[max_gt];
#> int t = num_elements(infections);
#> int ot = t - seeding_time;
#> vector[ot] R;
#> vector[ot] sR;
#> vector[ot] infectiousness = rep_vector(1e-5, ot);
#> // calculate PMF of the generation time
#> for (i in 1:(max_gt)) {
#> gt_indexes[i] = max_gt - i + 1;
#> }
#> if (gt_sd > 0) {
#> gt_pmf = discretised_gamma_pmf(gt_indexes, gt_mean, gt_sd, max_gt);
#> } else {
#> gt_pmf = discretised_delta_pmf(gt_indexes);
#> }
#> // calculate Rt using Cori et al. approach
#> for (s in 1:ot) {
#> infectiousness[s] += update_infectiousness(infections, gt_pmf, seeding_time, max_gt, s);
#> R[s] = infections[s + seeding_time] / infectiousness[s];
#> }
#> if (smooth) {
#> for (s in 1:ot) {
#> real window = 0;
#> sR[s] = 0;
#> for (i in max(1, s - smooth):min(ot, s + smooth)) {
#> sR[s] += R[i];
#> window += 1;
#> }
#> sR[s] = sR[s] / window;
#> }
#> }else{
#> sR = R;
#> }
#> return(sR);
#> }
#> // Convert an estimate of Rt to growth
#> real[] R_to_growth(vector R, real gt_mean, real gt_sd) {
#> int t = num_elements(R);
#> real r[t];
#> if (gt_sd > 0) {
#> real k = pow(gt_sd / gt_mean, 2);
#> for (s in 1:t) {
#> r[s] = (pow(R[s], k) - 1) / (k * gt_mean);
#> }
#> } else {
#> // limit as gt_sd -> 0
#> for (s in 1:t) {
#> r[s] = log(R[s]) / gt_mean;
#> }
#> }
#> return(r);
#> }
#> }
#>
#>
#> data {
#>
#> int t; // unobserved time
#> int seeding_time; // time period used for seeding and not observed
#> int horizon; // forecast horizon
#> int future_time; // time in future for Rt
#> int<lower = 0> cases[t - horizon - seeding_time]; // observed cases
#> vector<lower = 0>[t] shifted_cases; // prior infections (for backcalculation)
#>
#> int delays; // no. of delay distributions
#> real delay_mean_sd[delays]; // prior sd of mean incubation period
#> real delay_mean_mean[delays];// prior mean of mean incubation period
#> real delay_sd_mean[delays]; // prior sd of sd of incubation period
#> real delay_sd_sd[delays]; // prior sd of sd of incubation period
#> int max_delay[delays]; // maximum incubation period
#>
#> real L; // boundary value for infections gp
#> int<lower=1> M; // basis functions for infections gp
#> real ls_meanlog; // meanlog for gp lengthscale prior
#> real ls_sdlog; // sdlog for gp lengthscale prior
#> real<lower=0> ls_min; // Lower bound for the lengthscale
#> real<lower=0> ls_max; // Upper bound for the lengthscale
#> real alpha_sd; // standard deviation of the alpha gp kernal parameter
#> int gp_type; // type of gp, 0 = squared exponential, 1 = 3/2 matern
#> int stationary; // is underlying gaussian process first or second order
#> int fixed; // should a gaussian process be used
#>
#> real gt_mean_sd; // prior sd of mean generation time
#> real gt_mean_mean; // prior mean of mean generation time
#> real gt_sd_mean; // prior mean of sd of generation time
#> real gt_sd_sd; // prior sd of sd of generation time
#> int max_gt; // maximum generation time
#>
#> int estimate_r; // should the reproduction no be estimated (1 = yes)
#> real prior_infections; // prior for initial infections
#> real prior_growth; // prior on initial growth rate
#> real <lower = 0> r_mean; // prior mean of reproduction number
#> real <lower = 0> r_sd; // prior standard deviation of reproduction number
#> int bp_n; // no of breakpoints (0 = no breakpoints)
#> int breakpoints[t - seeding_time]; // when do breakpoints occur
#> int future_fixed; // is underlying future Rt assumed to be fixed
#> int fixed_from; // Reference date for when Rt estimation should be fixed
#> int pop; // Initial susceptible population
#>
#> int backcalc_prior; // Prior type to use for backcalculation
#> int rt_half_window; // Half the moving average window used when calculating Rt
#>
#> int day_of_week[t - seeding_time]; // day of the week indicator (1 - 7)
#> int model_type; // type of model: 0 = poisson otherwise negative binomial
#> real phi_mean; // Mean and sd of the normal prior for the
#> real phi_sd; // reporting process
#> int week_effect; // length of week effect
#> int truncation; // 1/0 indicating if truncation should be adjusted for
#> real trunc_mean_mean[truncation]; // truncation mean of mean
#> real trunc_mean_sd[truncation]; // truncation sd of mean
#> real trunc_sd_mean[truncation]; // truncation mean of sd
#> real trunc_sd_sd[truncation]; // truncation sd of sd
#> int max_truncation[truncation]; // maximum truncation supported
#> int obs_scale; // logical controlling scaling of observations
#> real obs_scale_mean; // mean scaling factor for observations
#> real obs_scale_sd; // standard deviation of observation scaling
#> real obs_weight; // weight given to observation in log density
#> int likelihood; // Should the likelihood be included in the model
#> int return_likelihood; // Should the likehood be returned by the model
#> }
#>
#> transformed data{
#> // observations
#> int ot = t - seeding_time - horizon; // observed time
#> int ot_h = ot + horizon; // observed time + forecast horizon
#> // gaussian process
#> int noise_terms = setup_noise(ot_h, t, horizon, estimate_r, stationary, future_fixed, fixed_from);
#> matrix[noise_terms, M] PHI = setup_gp(M, L, noise_terms); // basis function
#> // Rt
#> real r_logmean = log(r_mean^2 / sqrt(r_sd^2 + r_mean^2));
#> real r_logsd = sqrt(log(1 + (r_sd^2 / r_mean^2)));
#> }
#>
#> parameters{
#> // gaussian process
#> real<lower = ls_min,upper=ls_max> rho[fixed ? 0 : 1]; // length scale of noise GP
#> real<lower = 0> alpha[fixed ? 0 : 1]; // scale of of noise GP
#> vector[fixed ? 0 : M] eta; // unconstrained noise
#> // Rt
#> vector[estimate_r] log_R; // baseline reproduction number estimate (log)
#> real initial_infections[estimate_r] ; // seed infections
#> real initial_growth[estimate_r && seeding_time > 1 ? 1 : 0]; // seed growth rate
#> real<lower = 0, upper = max_gt> gt_mean[estimate_r && gt_mean_sd > 0]; // mean of generation time (if uncertain)
#> real<lower = 0> gt_sd[estimate_r && gt_sd_sd > 0]; // sd of generation time (if uncertain)
#> real<lower = 0> bp_sd[bp_n > 0 ? 1 : 0]; // standard deviation of breakpoint effect
#> real bp_effects[bp_n]; // Rt breakpoint effects
#> // observation model
#> real delay_mean[delays]; // mean of delays
#> real<lower = 0> delay_sd[delays]; // sd of delays
#> simplex[week_effect] day_of_week_simplex;// day of week reporting effect
#> real<lower = 0> frac_obs[obs_scale]; // fraction of cases that are ultimately observed
#> real truncation_mean[truncation]; // mean of truncation
#> real<lower = 0> truncation_sd[truncation]; // sd of truncation
#> real<lower = 0> rep_phi[model_type]; // overdispersion of the reporting process
#> }
#>
#> transformed parameters {
#> vector[fixed ? 0 : noise_terms] noise; // noise generated by the gaussian process
#> vector<lower = 0, upper = 10 * r_mean>[estimate_r > 0 ? ot_h : 0] R; // reproduction number
#> vector[t] infections; // latent infections
#> vector[ot_h] reports; // estimated reported cases
#> vector[ot] obs_reports; // observed estimated reported cases
#> // GP in noise - spectral densities
#> if (!fixed) {
#> noise = update_gp(PHI, M, L, alpha[1], rho[1], eta, gp_type);
#> }
#> // Estimate latent infections
#> if (estimate_r) {
#> // via Rt
#> real set_gt_mean = (gt_mean_sd > 0 ? gt_mean[1] : gt_mean_mean);
#> real set_gt_sd = (gt_sd_sd > 0 ? gt_sd[1] : gt_sd_mean);
#> R = update_Rt(R, log_R[estimate_r], noise, breakpoints, bp_effects, stationary);
#> infections = generate_infections(R, seeding_time, set_gt_mean, set_gt_sd, max_gt,
#> initial_infections, initial_growth,
#> pop, future_time);
#> } else {
#> // via deconvolution
#> infections = deconvolve_infections(shifted_cases, noise, fixed, backcalc_prior);
#> }
#> // convolve from latent infections to mean of observations
#> reports = convolve_to_report(infections, delay_mean, delay_sd, max_delay, seeding_time);
#> // weekly reporting effect
#> if (week_effect > 1) {
#> reports = day_of_week_effect(reports, day_of_week, day_of_week_simplex);
#> }
#> // scaling of reported cases by fraction observed
#> if (obs_scale) {
#> reports = scale_obs(reports, frac_obs[1]);
#> }
#> // truncate near time cases to observed reports
#> obs_reports = truncate(reports[1:ot], truncation_mean, truncation_sd,
#> max_truncation, 0);
#> }
#>
#> model {
#> // priors for noise GP
#> if (!fixed) {
#> gaussian_process_lp(rho[1], alpha[1], eta, ls_meanlog,
#> ls_sdlog, ls_min, ls_max, alpha_sd);
#> }
#> // penalised priors for delay distributions
#> delays_lp(delay_mean, delay_mean_mean, delay_mean_sd, delay_sd, delay_sd_mean, delay_sd_sd, t);
#> // priors for truncation
#> truncation_lp(truncation_mean, truncation_sd, trunc_mean_mean, trunc_mean_sd,
#> trunc_sd_mean, trunc_sd_sd);
#> if (estimate_r) {
#> // priors on Rt
#> rt_lp(log_R, initial_infections, initial_growth, bp_effects, bp_sd, bp_n, seeding_time,
#> r_logmean, r_logsd, prior_infections, prior_growth);
#> // penalised_prior on generation interval
#> generation_time_lp(gt_mean, gt_mean_mean, gt_mean_sd, gt_sd, gt_sd_mean, gt_sd_sd, ot);
#> }
#> // prior observation scaling
#> if (obs_scale) {
#> frac_obs[1] ~ normal(obs_scale_mean, obs_scale_sd) T[0,];
#> }
#> // observed reports from mean of reports (update likelihood)
#> if (likelihood) {
#> report_lp(cases, obs_reports, rep_phi, phi_mean, phi_sd,
#> model_type, obs_weight);
#> }
#> }
#>
#> generated quantities {
#> int imputed_reports[ot_h];
#> vector[estimate_r > 0 ? 0: ot_h] gen_R;
#> real r[ot_h];
#> vector[return_likelihood > 1 ? ot : 0] log_lik;
#> if (estimate_r){
#> // estimate growth from estimated Rt
#> real set_gt_mean = (gt_mean_sd > 0 ? gt_mean[1] : gt_mean_mean);
#> real set_gt_sd = (gt_sd_sd > 0 ? gt_sd[1] : gt_sd_mean);
#> r = R_to_growth(R, set_gt_mean, set_gt_sd);
#> }else{
#> // sample generation time
#> real gt_mean_sample = (gt_mean_sd > 0 ? normal_rng(gt_mean_mean, gt_mean_sd) : gt_mean_mean);
#> real gt_sd_sample = (gt_sd_sd > 0 ? normal_rng(gt_sd_mean, gt_sd_sd) : gt_sd_mean);
#> // calculate Rt using infections and generation time
#> gen_R = calculate_Rt(infections, seeding_time, gt_mean_sample, gt_sd_sample,
#> max_gt, rt_half_window);
#> // estimate growth from calculated Rt
#> r = R_to_growth(gen_R, gt_mean_sample, gt_sd_sample);
#> }
#> // simulate reported cases
#> imputed_reports = report_rng(reports, rep_phi, model_type);
#> // log likelihood of model
#> if (return_likelihood) {
#> log_lik = report_log_lik(cases, obs_reports, rep_phi, model_type,
#> obs_weight);
#> }
#> }
#>
#> $method
#> [1] "sampling"
#>
#> $cores
#> [1] 1
#>
#> $warmup
#> [1] 250
#>
#> $chains
#> [1] 4
#>
#> $save_warmup
#> [1] FALSE
#>
#> $seed
#> [1] 32139516
#>
#> $future
#> [1] FALSE
#>
#> $max_execution_time
#> [1] Inf
#>
#> $control
#> $control$adapt_delta
#> [1] 0.95
#>
#> $control$max_treedepth
#> [1] 15
#>
#>
#> $iter
#> [1] 750
#>
# increasing warmup
create_stan_args(stan = stan_opts(warmup = 1000))
#> $data
#> NULL
#>
#> $init
#> [1] "random"
#>
#> $refresh
#> [1] 0
#>
#> $object
#> S4 class stanmodel 'estimate_infections' coded as follows:
#> functions {
#>
#> // discretised truncated gamma pmf
#> vector discretised_gamma_pmf(int[] y, real mu, real sigma, int max_val) {
#> int n = num_elements(y);
#> vector[n] pmf;
#> real trunc_pmf;
#> // calculate alpha and beta for gamma distribution
#> real small = 1e-5;
#> real large = 1e8;
#> real c_sigma = fmax(small, sigma);
#> real c_mu = fmax(small, mu);
#> real alpha = ((c_mu) / c_sigma)^2;
#> real beta = (c_mu) / (c_sigma^2);
#> // account for numerical issues
#> alpha = fmax(small, alpha);
#> alpha = fmin(large, alpha);
#> beta = fmax(small, beta);
#> beta = fmin(large, beta);
#> // calculate pmf
#> trunc_pmf = gamma_cdf(max_val + 1, alpha, beta) - gamma_cdf(1, alpha, beta);
#> for (i in 1:n){
#> pmf[i] = (gamma_cdf(y[i] + 1, alpha, beta) - gamma_cdf(y[i], alpha, beta)) /
#> trunc_pmf;
#> }
#> return(pmf);
#> }
#>
#> // discretised truncated lognormal pmf
#> vector discretised_lognormal_pmf(int[] y, real mu, real sigma, int max_val) {
#> int n = num_elements(y);
#> vector[n] pmf;
#> real small = 1e-5;
#> real c_sigma = fmax(small, sigma);
#> real c_mu = fmax(small, mu);
#> vector[n] adj_y = to_vector(y) + small;
#> vector[n] upper_y = (log(adj_y + 1) - c_mu) / c_sigma;
#> vector[n] lower_y = (log(adj_y) - c_mu) / c_sigma;
#> real max_cdf = normal_cdf((log(max_val + small) - c_mu) / c_sigma, 0.0, 1.0);
#> real min_cdf = normal_cdf((log(small) - c_mu) / c_sigma, 0.0, 1.0);
#> real trunc_cdf = max_cdf - min_cdf;
#> for (i in 1:n) {
#> pmf[i] = (normal_cdf(upper_y[i], 0.0, 1.0) - normal_cdf(lower_y[i], 0.0, 1.0)) /
#> trunc_cdf;
#> }
#> return(pmf);
#> }
#>
#> // reverse a mf
#> vector reverse_mf(vector pmf, int max_pmf) {
#> vector[max_pmf] rev_pmf;
#> for (d in 1:max_pmf) {
#> rev_pmf[d] = pmf[max_pmf - d + 1];
#> }
#> return rev_pmf;
#> }
#>
#> // discretised truncated gamma pmf
#> vector discretised_delta_pmf(int[] y) {
#> int n = num_elements(y);
#> vector[n] pmf;
#> pmf[y[1]] = 1;
#> if (n > 1) {
#> for (i in 2:n) {
#> pmf[y[i]] = 0;
#> }
#> }
#> return(pmf);
#> }
#>
#> // convolve a pdf and case vector
#> vector convolve(vector cases, vector rev_pmf) {
#> int t = num_elements(cases);
#> int max_pmf = num_elements(rev_pmf);
#> vector[t] conv_cases = rep_vector(1e-5, t);
#> for (s in 1:t) {
#> conv_cases[s] += dot_product(cases[max(1, (s - max_pmf + 1)):s],
#> tail(rev_pmf, min(max_pmf, s)));
#> }
#> return(conv_cases);
#> }
#>
#>
#> // convolve latent infections to reported (but still unobserved) cases
#> vector convolve_to_report(vector infections,
#> real[] delay_mean,
#> real[] delay_sd,
#> int[] max_delay,
#> int seeding_time) {
#> int t = num_elements(infections);
#> vector[t - seeding_time] reports;
#> vector[t] unobs_reports = infections;
#> int delays = num_elements(delay_mean);
#> if (delays) {
#> for (s in 1:delays) {
#> vector[max_delay[s]] pmf = rep_vector(1e-5, max_delay[s]);
#> int delay_indexes[max_delay[s]];
#> for (i in 1:max_delay[s]) {
#> delay_indexes[i] = max_delay[s] - i;
#> }
#> pmf = pmf + discretised_lognormal_pmf(delay_indexes, delay_mean[s],
#> delay_sd[s], max_delay[s]);
#> unobs_reports = convolve(unobs_reports, pmf);
#> }
#> reports = unobs_reports[(seeding_time + 1):t];
#> }else{
#> reports = infections[(seeding_time + 1):t];
#> }
#> return(reports);
#> }
#>
#> void delays_lp(real[] delay_mean, real[] delay_mean_mean, real[] delay_mean_sd,
#> real[] delay_sd, real[] delay_sd_mean, real[] delay_sd_sd, int weight){
#> int delays = num_elements(delay_mean);
#> if (delays) {
#> for (s in 1:delays) {
#> target += normal_lpdf(delay_mean[s] | delay_mean_mean[s], delay_mean_sd[s]) * weight;
#> target += normal_lpdf(delay_sd[s] | delay_sd_mean[s], delay_sd_sd[s]) * weight;
#> }
#> }
#> }
#>
#> // eigenvalues for approximate hilbert space gp
#> // see here for details: https://arxiv.org/pdf/2004.11408.pdf
#> real lambda(real L, int m) {
#> real lam;
#> lam = ((m*pi())/(2*L))^2;
#> return lam;
#> }
#> // eigenfunction for approximate hilbert space gp
#> // see here for details: https://arxiv.org/pdf/2004.11408.pdf
#> vector phi(real L, int m, vector x) {
#> vector[rows(x)] fi;
#> fi = 1/sqrt(L) * sin(m*pi()/(2*L) * (x+L));
#> return fi;
#> }
#> // spectral density of the exponential quadratic kernal
#> real spd_se(real alpha, real rho, real w) {
#> real S;
#> S = (alpha^2) * sqrt(2*pi()) * rho * exp(-0.5*(rho^2)*(w^2));
#> return S;
#> }
#> // spectral density of the Matern 3/2 kernel
#> real spd_matern(real alpha, real rho, real w) {
#> real S;
#> S = 4*alpha^2 * (sqrt(3)/rho)^3 * 1/((sqrt(3)/rho)^2 + w^2)^2;
#> return S;
#> }
#> // setup gaussian process noise dimensions
#> int setup_noise(int ot_h, int t, int horizon, int estimate_r,
#> int stationary, int future_fixed, int fixed_from) {
#> int noise_time = estimate_r > 0 ? (stationary > 0 ? ot_h : ot_h - 1) : t;
#> int noise_terms = future_fixed > 0 ? (noise_time - horizon + fixed_from) : noise_time;
#> return(noise_terms);
#> }
#> // setup approximate gaussian process
#> matrix setup_gp(int M, real L, int dimension) {
#> vector[dimension] time;
#> matrix[dimension, M] PHI;
#> real half_dim = dimension / 2.0;
#> for (s in 1:dimension) {
#> time[s] = (s - half_dim) / half_dim;
#> }
#> for (m in 1:M){
#> PHI[,m] = phi(L, m, time);
#> }
#> return(PHI);
#> }
#> // update gaussian process using spectral densities
#> vector update_gp(matrix PHI, int M, real L, real alpha,
#> real rho, vector eta, int type) {
#> vector[M] diagSPD; // spectral density
#> vector[M] SPD_eta; // spectral density * noise
#> int noise_terms = rows(PHI);
#> vector[noise_terms] noise = rep_vector(1e-6, noise_terms);
#> real unit_rho = rho / noise_terms;
#> // GP in noise - spectral densities
#> if (type == 0) {
#> for(m in 1:M){
#> diagSPD[m] = sqrt(spd_se(alpha, unit_rho, sqrt(lambda(L, m))));
#> }
#> }else if (type == 1) {
#> for(m in 1:M){
#> diagSPD[m] = sqrt(spd_matern(alpha, unit_rho, sqrt(lambda(L, m))));
#> }
#> }
#> SPD_eta = diagSPD .* eta;
#> noise = noise + PHI[,] * SPD_eta;
#> return(noise);
#> }
#> // priors for gaussian process
#> void gaussian_process_lp(real rho, real alpha, vector eta,
#> real ls_meanlog, real ls_sdlog,
#> real ls_min, real ls_max, real alpha_sd) {
#> if (ls_sdlog > 0) {
#> rho ~ lognormal(ls_meanlog, ls_sdlog) T[ls_min, ls_max];
#> } else {
#> rho ~ inv_gamma(1.499007, 0.057277 * ls_max) T[ls_min, ls_max];
#> }
#> alpha ~ normal(0, alpha_sd);
#> eta ~ std_normal();
#> }
#>
#> // update a vector of Rts
#> vector update_Rt(vector input_R, real log_R, vector noise, int[] bps,
#> real[] bp_effects, int stationary) {
#> // define control parameters
#> int t = num_elements(input_R);
#> int bp_n = num_elements(bp_effects);
#> int bp_c = 0;
#> int gp_n = num_elements(noise);
#> // define result vectors
#> vector[t] bp = rep_vector(0, t);
#> vector[t] gp = rep_vector(0, t);
#> vector[t] R;
#> // initialise breakpoints
#> if (bp_n) {
#> for (s in 1:t) {
#> if (bps[s]) {
#> bp_c += bps[s];
#> bp[s] = bp_effects[bp_c];
#> }
#> }
#> bp = cumulative_sum(bp);
#> }
#> //initialise gaussian process
#> if (gp_n) {
#> if (stationary) {
#> gp[1:gp_n] = noise;
#> // fix future gp based on last estimated
#> if (t > gp_n) {
#> gp[(gp_n + 1):t] = rep_vector(noise[gp_n], t - gp_n);
#> }
#> }else{
#> gp[2:(gp_n + 1)] = noise;
#> gp = cumulative_sum(gp);
#> }
#> }
#> // Calculate Rt
#> R = rep_vector(log_R, t) + bp + gp;
#> R = exp(R);
#> return(R);
#> }
#> // Rt priors
#> void rt_lp(vector log_R, real[] initial_infections, real[] initial_growth,
#> real[] bp_effects, real[] bp_sd, int bp_n, int seeding_time,
#> real r_logmean, real r_logsd, real prior_infections,
#> real prior_growth) {
#> // prior on R
#> log_R ~ normal(r_logmean, r_logsd);
#> //breakpoint effects on Rt
#> if (bp_n > 0) {
#> bp_sd[1] ~ normal(0, 0.1) T[0,];
#> bp_effects ~ normal(0, bp_sd[1]);
#> }
#> // initial infections
#> initial_infections ~ normal(prior_infections, 0.2);
#> if (seeding_time > 1) {
#> initial_growth ~ normal(prior_growth, 0.2);
#> }
#> }
#>
#> // calculate infectiousness (weighted sum of the generation time and infections)
#> // for a single time point
#> real update_infectiousness(vector infections, vector gt_pmf,
#> int seeding_time, int max_gt, int index){
#> // work out where to start the convolution of past infections with the
#> // generation time distribution: (current_time - maximal generation time) if
#> // that is >= 1, otherwise 1
#> int inf_start = max(1, (index + seeding_time - max_gt));
#> // work out where to end the convolution: (current_time - 1)
#> int inf_end = (index + seeding_time - 1);
#> // number of indices of the generation time to sum over (inf_end - inf_start + 1)
#> int pmf_accessed = min(max_gt, index + seeding_time - 1);
#> // calculate the elements of the convolution
#> real new_inf = dot_product(infections[inf_start:inf_end], tail(gt_pmf, pmf_accessed));
#> return(new_inf);
#> }
#> // generate infections by using Rt = Rt-1 * sum(reversed generation time pmf * infections)
#> vector generate_infections(vector oR, int uot,
#> real gt_mean, real gt_sd, int max_gt,
#> real[] initial_infections, real[] initial_growth,
#> int pop, int ht) {
#> // time indices and storage
#> int ot = num_elements(oR);
#> int nht = ot - ht;
#> int t = ot + uot;
#> vector[ot] R = oR;
#> real exp_adj_Rt;
#> vector[t] infections = rep_vector(1e-5, t);
#> vector[ot] cum_infections = rep_vector(0, ot);
#> vector[ot] infectiousness = rep_vector(1e-5, ot);
#> // generation time pmf
#> vector[max_gt] gt_pmf = rep_vector(1e-5, max_gt);
#> // revert indices (this is for later doing the convolution with recent cases)
#> int gt_indexes[max_gt];
#> for (i in 1:(max_gt)) {
#> gt_indexes[i] = max_gt - i + 1;
#> }
#> if (gt_sd > 0) {
#> // SD > 0: use discretised gamma
#> gt_pmf = gt_pmf + discretised_gamma_pmf(gt_indexes, gt_mean, gt_sd, max_gt);
#> } else {
#> // SD == 0: use discretised delta
#> gt_pmf = gt_pmf + discretised_delta_pmf(gt_indexes);
#> }
#> // Initialise infections using daily growth
#> infections[1] = exp(initial_infections[1]);
#> if (uot > 1) {
#> for (s in 2:uot) {
#> infections[s] = exp(initial_infections[1] + initial_growth[1] * (s - 1));
#> }
#> }
#> // calculate cumulative infections
#> if (pop) {
#> cum_infections[1] = sum(infections[1:uot]);
#> }
#> // iteratively update infections
#> for (s in 1:ot) {
#> infectiousness[s] += update_infectiousness(infections, gt_pmf, uot, max_gt, s);
#> if (pop && s > nht) {
#> exp_adj_Rt = exp(-R[s] * infectiousness[s] / (pop - cum_infections[nht]));
#> exp_adj_Rt = exp_adj_Rt > 1 ? 1 : exp_adj_Rt;
#> infections[s + uot] = (pop - cum_infections[s]) * (1 - exp_adj_Rt);
#> }else{
#> infections[s + uot] += R[s] * infectiousness[s];
#> }
#> if (pop && s < ot) {
#> cum_infections[s + 1] = cum_infections[s] + infections[s + uot];
#> }
#> }
#> return(infections);
#> }
#> // backcalculate infections using mean shifted cases and non-parametric noise
#> vector deconvolve_infections(vector shifted_cases, vector noise, int fixed,
#> int prior) {
#> int t = num_elements(shifted_cases);
#> vector[t] infections = rep_vector(1e-5, t);
#> if(!fixed) {
#> vector[t] exp_noise = exp(noise);
#> if (prior == 1) {
#> infections = infections + shifted_cases .* exp_noise;
#> }else if (prior == 0) {
#> infections = infections + exp_noise;
#> }else if (prior == 2) {
#> infections[1] = infections[1] + shifted_cases[1] * exp_noise[1];
#> for (i in 2:t) {
#> infections[i] = infections[i - 1] * exp_noise[i];
#> }
#> }
#> }else{
#> infections = infections + shifted_cases;
#> }
#> return(infections);
#> }
#> // Update the log density for the generation time distribution mean and sd
#> void generation_time_lp(real[] gt_mean, real gt_mean_mean, real gt_mean_sd,
#> real[] gt_sd, real gt_sd_mean, real gt_sd_sd, int weight) {
#> if (gt_mean_sd > 0) {
#> target += normal_lpdf(gt_mean[1] | gt_mean_mean, gt_mean_sd) * weight;
#> }
#> if (gt_sd_sd > 0) {
#> target += normal_lpdf(gt_sd[1] | gt_sd_mean, gt_sd_sd) * weight;
#> }
#> }
#>
#>
#> // apply day of the week effect
#> vector day_of_week_effect(vector reports, int[] day_of_week, vector effect) {
#> int t = num_elements(reports);
#> int wl = num_elements(effect);
#> // scale day of week effect
#> vector[wl] scaled_effect = wl * effect;
#> vector[t] scaled_reports;
#> for (s in 1:t) {
#> // add reporting effects (adjust for simplex scale)
#> scaled_reports[s] = reports[s] * scaled_effect[day_of_week[s]];
#> }
#> return(scaled_reports);
#> }
#> // Scale observations by fraction reported and update log density of
#> // fraction reported
#> vector scale_obs(vector reports, real frac_obs) {
#> int t = num_elements(reports);
#> vector[t] scaled_reports;
#> scaled_reports = reports * frac_obs;
#> return(scaled_reports);
#> }
#> // Calculate a truncation CMF
#> vector truncation_cmf(real trunc_mean, real trunc_sd, int trunc_max) {
#> int trunc_indexes[trunc_max];
#> vector[trunc_max] cmf;
#> for (i in 1:(trunc_max)) {
#> trunc_indexes[i] = i - 1;
#> }
#> cmf = discretised_lognormal_pmf(trunc_indexes, trunc_mean, trunc_sd, trunc_max);
#> cmf[1] = cmf[1] + 1e-8;
#> cmf = cumulative_sum(cmf);
#> cmf = reverse_mf(cmf, trunc_max);
#> return(cmf);
#> }
#> // Truncate observed data by some truncation distribution
#> vector truncate(vector reports, real[] truncation_mean, real[] truncation_sd,
#> int[] truncation_max, int reconstruct) {
#> int t = num_elements(reports);
#> int truncation = num_elements(truncation_mean);
#> vector[t] trunc_reports = reports;
#> if (truncation) {
#> // Calculate cmf of truncation delay
#> int trunc_max = truncation_max[1] > t ? t : truncation_max[1];
#> int trunc_indexes[trunc_max];
#> vector[trunc_max] cmf;
#> int first_t = t - trunc_max + 1;
#> cmf = truncation_cmf(truncation_mean[1], truncation_sd[1], trunc_max);
#> // Apply cdf of truncation delay to truncation max last entries in reports
#> if (reconstruct) {
#> trunc_reports[first_t:t] = trunc_reports[first_t:t] ./ cmf;
#> }else{
#> trunc_reports[first_t:t] = trunc_reports[first_t:t] .* cmf;
#> }
#> }
#> return(trunc_reports);
#> }
#> // Truncation distribution priors
#> void truncation_lp(real[] truncation_mean, real[] truncation_sd,
#> real[] trunc_mean_mean, real[] trunc_mean_sd,
#> real[] trunc_sd_mean, real[] trunc_sd_sd) {
#> int truncation = num_elements(truncation_mean);
#> if (truncation) {
#> truncation_mean ~ normal(trunc_mean_mean, trunc_mean_sd);
#> truncation_sd ~ normal(trunc_sd_mean, trunc_sd_sd);
#> }
#> }
#> // update log density for reported cases
#> void report_lp(int[] cases, vector reports,
#> real[] rep_phi, real phi_mean, real phi_sd,
#> int model_type, real weight) {
#> real sqrt_phi = 1e5;
#> if (model_type) {
#> // the reciprocal overdispersion parameter (phi)
#> rep_phi[model_type] ~ normal(phi_mean, phi_sd) T[0,];
#> sqrt_phi = 1 / sqrt(rep_phi[model_type]);
#> // defer to poisson if phi is large, to avoid overflow or
#> // if poisson specified
#> }
#> if (sqrt_phi > 1e4) {
#> if (weight == 1) {
#> cases ~ poisson(reports);
#> }else{
#> target += poisson_lpmf(cases | reports) * weight;
#> }
#> } else {
#> if (weight == 1) {
#> cases ~ neg_binomial_2(reports, sqrt_phi);
#> }else{
#> target += neg_binomial_2_lpmf(cases | reports, sqrt_phi);
#> }
#> }
#>
#> }
#> // update log likelihood (as above but not vectorised and returning log likelihood)
#> vector report_log_lik(int[] cases, vector reports,
#> real[] rep_phi, int model_type, real weight) {
#> int t = num_elements(reports);
#> vector[t] log_lik;
#> real sqrt_phi = 1e5;
#> if (model_type) {
#> // the reciprocal overdispersion parameter (phi)
#> sqrt_phi = 1 / sqrt(rep_phi[model_type]);
#> }
#>
#> // defer to poisson if phi is large, to avoid overflow
#> if (sqrt_phi > 1e4) {
#> for (i in 1:t) {
#> log_lik[i] = poisson_lpmf(cases[i] | reports[i]) * weight;
#> }
#> } else {
#> for (i in 1:t) {
#> log_lik[i] = neg_binomial_2_lpmf(cases[i] | reports[i], sqrt_phi) * weight;
#> }
#> }
#> return(log_lik);
#> }
#> // sample reported cases from the observation model
#> int[] report_rng(vector reports, real[] rep_phi, int model_type) {
#> int t = num_elements(reports);
#> int sampled_reports[t];
#> real sqrt_phi = 1e5;
#> if (model_type) {
#> sqrt_phi = 1 / sqrt(rep_phi[model_type]);
#> }
#>
#> for (s in 1:t) {
#> // defer to poisson if phi is large, to avoid overflow
#> if (sqrt_phi > 1e4) {
#> sampled_reports[s] = poisson_rng(reports[s] > 1e8 ? 1e8 : reports[s]);
#> } else {
#> sampled_reports[s] = neg_binomial_2_rng(reports[s] > 1e8 ? 1e8 : reports[s], sqrt_phi);
#> }
#> }
#> return(sampled_reports);
#> }
#>
#> // calculate Rt directly from inferred infections
#> vector calculate_Rt(vector infections, int seeding_time,
#> real gt_mean, real gt_sd, int max_gt,
#> int smooth) {
#> vector[max_gt] gt_pmf;
#> int gt_indexes[max_gt];
#> int t = num_elements(infections);
#> int ot = t - seeding_time;
#> vector[ot] R;
#> vector[ot] sR;
#> vector[ot] infectiousness = rep_vector(1e-5, ot);
#> // calculate PMF of the generation time
#> for (i in 1:(max_gt)) {
#> gt_indexes[i] = max_gt - i + 1;
#> }
#> if (gt_sd > 0) {
#> gt_pmf = discretised_gamma_pmf(gt_indexes, gt_mean, gt_sd, max_gt);
#> } else {
#> gt_pmf = discretised_delta_pmf(gt_indexes);
#> }
#> // calculate Rt using Cori et al. approach
#> for (s in 1:ot) {
#> infectiousness[s] += update_infectiousness(infections, gt_pmf, seeding_time, max_gt, s);
#> R[s] = infections[s + seeding_time] / infectiousness[s];
#> }
#> if (smooth) {
#> for (s in 1:ot) {
#> real window = 0;
#> sR[s] = 0;
#> for (i in max(1, s - smooth):min(ot, s + smooth)) {
#> sR[s] += R[i];
#> window += 1;
#> }
#> sR[s] = sR[s] / window;
#> }
#> }else{
#> sR = R;
#> }
#> return(sR);
#> }
#> // Convert an estimate of Rt to growth
#> real[] R_to_growth(vector R, real gt_mean, real gt_sd) {
#> int t = num_elements(R);
#> real r[t];
#> if (gt_sd > 0) {
#> real k = pow(gt_sd / gt_mean, 2);
#> for (s in 1:t) {
#> r[s] = (pow(R[s], k) - 1) / (k * gt_mean);
#> }
#> } else {
#> // limit as gt_sd -> 0
#> for (s in 1:t) {
#> r[s] = log(R[s]) / gt_mean;
#> }
#> }
#> return(r);
#> }
#> }
#>
#>
#> data {
#>
#> int t; // unobserved time
#> int seeding_time; // time period used for seeding and not observed
#> int horizon; // forecast horizon
#> int future_time; // time in future for Rt
#> int<lower = 0> cases[t - horizon - seeding_time]; // observed cases
#> vector<lower = 0>[t] shifted_cases; // prior infections (for backcalculation)
#>
#> int delays; // no. of delay distributions
#> real delay_mean_sd[delays]; // prior sd of mean incubation period
#> real delay_mean_mean[delays];// prior mean of mean incubation period
#> real delay_sd_mean[delays]; // prior sd of sd of incubation period
#> real delay_sd_sd[delays]; // prior sd of sd of incubation period
#> int max_delay[delays]; // maximum incubation period
#>
#> real L; // boundary value for infections gp
#> int<lower=1> M; // basis functions for infections gp
#> real ls_meanlog; // meanlog for gp lengthscale prior
#> real ls_sdlog; // sdlog for gp lengthscale prior
#> real<lower=0> ls_min; // Lower bound for the lengthscale
#> real<lower=0> ls_max; // Upper bound for the lengthscale
#> real alpha_sd; // standard deviation of the alpha gp kernal parameter
#> int gp_type; // type of gp, 0 = squared exponential, 1 = 3/2 matern
#> int stationary; // is underlying gaussian process first or second order
#> int fixed; // should a gaussian process be used
#>
#> real gt_mean_sd; // prior sd of mean generation time
#> real gt_mean_mean; // prior mean of mean generation time
#> real gt_sd_mean; // prior mean of sd of generation time
#> real gt_sd_sd; // prior sd of sd of generation time
#> int max_gt; // maximum generation time
#>
#> int estimate_r; // should the reproduction no be estimated (1 = yes)
#> real prior_infections; // prior for initial infections
#> real prior_growth; // prior on initial growth rate
#> real <lower = 0> r_mean; // prior mean of reproduction number
#> real <lower = 0> r_sd; // prior standard deviation of reproduction number
#> int bp_n; // no of breakpoints (0 = no breakpoints)
#> int breakpoints[t - seeding_time]; // when do breakpoints occur
#> int future_fixed; // is underlying future Rt assumed to be fixed
#> int fixed_from; // Reference date for when Rt estimation should be fixed
#> int pop; // Initial susceptible population
#>
#> int backcalc_prior; // Prior type to use for backcalculation
#> int rt_half_window; // Half the moving average window used when calculating Rt
#>
#> int day_of_week[t - seeding_time]; // day of the week indicator (1 - 7)
#> int model_type; // type of model: 0 = poisson otherwise negative binomial
#> real phi_mean; // Mean and sd of the normal prior for the
#> real phi_sd; // reporting process
#> int week_effect; // length of week effect
#> int truncation; // 1/0 indicating if truncation should be adjusted for
#> real trunc_mean_mean[truncation]; // truncation mean of mean
#> real trunc_mean_sd[truncation]; // truncation sd of mean
#> real trunc_sd_mean[truncation]; // truncation mean of sd
#> real trunc_sd_sd[truncation]; // truncation sd of sd
#> int max_truncation[truncation]; // maximum truncation supported
#> int obs_scale; // logical controlling scaling of observations
#> real obs_scale_mean; // mean scaling factor for observations
#> real obs_scale_sd; // standard deviation of observation scaling
#> real obs_weight; // weight given to observation in log density
#> int likelihood; // Should the likelihood be included in the model
#> int return_likelihood; // Should the likehood be returned by the model
#> }
#>
#> transformed data{
#> // observations
#> int ot = t - seeding_time - horizon; // observed time
#> int ot_h = ot + horizon; // observed time + forecast horizon
#> // gaussian process
#> int noise_terms = setup_noise(ot_h, t, horizon, estimate_r, stationary, future_fixed, fixed_from);
#> matrix[noise_terms, M] PHI = setup_gp(M, L, noise_terms); // basis function
#> // Rt
#> real r_logmean = log(r_mean^2 / sqrt(r_sd^2 + r_mean^2));
#> real r_logsd = sqrt(log(1 + (r_sd^2 / r_mean^2)));
#> }
#>
#> parameters{
#> // gaussian process
#> real<lower = ls_min,upper=ls_max> rho[fixed ? 0 : 1]; // length scale of noise GP
#> real<lower = 0> alpha[fixed ? 0 : 1]; // scale of of noise GP
#> vector[fixed ? 0 : M] eta; // unconstrained noise
#> // Rt
#> vector[estimate_r] log_R; // baseline reproduction number estimate (log)
#> real initial_infections[estimate_r] ; // seed infections
#> real initial_growth[estimate_r && seeding_time > 1 ? 1 : 0]; // seed growth rate
#> real<lower = 0, upper = max_gt> gt_mean[estimate_r && gt_mean_sd > 0]; // mean of generation time (if uncertain)
#> real<lower = 0> gt_sd[estimate_r && gt_sd_sd > 0]; // sd of generation time (if uncertain)
#> real<lower = 0> bp_sd[bp_n > 0 ? 1 : 0]; // standard deviation of breakpoint effect
#> real bp_effects[bp_n]; // Rt breakpoint effects
#> // observation model
#> real delay_mean[delays]; // mean of delays
#> real<lower = 0> delay_sd[delays]; // sd of delays
#> simplex[week_effect] day_of_week_simplex;// day of week reporting effect
#> real<lower = 0> frac_obs[obs_scale]; // fraction of cases that are ultimately observed
#> real truncation_mean[truncation]; // mean of truncation
#> real<lower = 0> truncation_sd[truncation]; // sd of truncation
#> real<lower = 0> rep_phi[model_type]; // overdispersion of the reporting process
#> }
#>
#> transformed parameters {
#> vector[fixed ? 0 : noise_terms] noise; // noise generated by the gaussian process
#> vector<lower = 0, upper = 10 * r_mean>[estimate_r > 0 ? ot_h : 0] R; // reproduction number
#> vector[t] infections; // latent infections
#> vector[ot_h] reports; // estimated reported cases
#> vector[ot] obs_reports; // observed estimated reported cases
#> // GP in noise - spectral densities
#> if (!fixed) {
#> noise = update_gp(PHI, M, L, alpha[1], rho[1], eta, gp_type);
#> }
#> // Estimate latent infections
#> if (estimate_r) {
#> // via Rt
#> real set_gt_mean = (gt_mean_sd > 0 ? gt_mean[1] : gt_mean_mean);
#> real set_gt_sd = (gt_sd_sd > 0 ? gt_sd[1] : gt_sd_mean);
#> R = update_Rt(R, log_R[estimate_r], noise, breakpoints, bp_effects, stationary);
#> infections = generate_infections(R, seeding_time, set_gt_mean, set_gt_sd, max_gt,
#> initial_infections, initial_growth,
#> pop, future_time);
#> } else {
#> // via deconvolution
#> infections = deconvolve_infections(shifted_cases, noise, fixed, backcalc_prior);
#> }
#> // convolve from latent infections to mean of observations
#> reports = convolve_to_report(infections, delay_mean, delay_sd, max_delay, seeding_time);
#> // weekly reporting effect
#> if (week_effect > 1) {
#> reports = day_of_week_effect(reports, day_of_week, day_of_week_simplex);
#> }
#> // scaling of reported cases by fraction observed
#> if (obs_scale) {
#> reports = scale_obs(reports, frac_obs[1]);
#> }
#> // truncate near time cases to observed reports
#> obs_reports = truncate(reports[1:ot], truncation_mean, truncation_sd,
#> max_truncation, 0);
#> }
#>
#> model {
#> // priors for noise GP
#> if (!fixed) {
#> gaussian_process_lp(rho[1], alpha[1], eta, ls_meanlog,
#> ls_sdlog, ls_min, ls_max, alpha_sd);
#> }
#> // penalised priors for delay distributions
#> delays_lp(delay_mean, delay_mean_mean, delay_mean_sd, delay_sd, delay_sd_mean, delay_sd_sd, t);
#> // priors for truncation
#> truncation_lp(truncation_mean, truncation_sd, trunc_mean_mean, trunc_mean_sd,
#> trunc_sd_mean, trunc_sd_sd);
#> if (estimate_r) {
#> // priors on Rt
#> rt_lp(log_R, initial_infections, initial_growth, bp_effects, bp_sd, bp_n, seeding_time,
#> r_logmean, r_logsd, prior_infections, prior_growth);
#> // penalised_prior on generation interval
#> generation_time_lp(gt_mean, gt_mean_mean, gt_mean_sd, gt_sd, gt_sd_mean, gt_sd_sd, ot);
#> }
#> // prior observation scaling
#> if (obs_scale) {
#> frac_obs[1] ~ normal(obs_scale_mean, obs_scale_sd) T[0,];
#> }
#> // observed reports from mean of reports (update likelihood)
#> if (likelihood) {
#> report_lp(cases, obs_reports, rep_phi, phi_mean, phi_sd,
#> model_type, obs_weight);
#> }
#> }
#>
#> generated quantities {
#> int imputed_reports[ot_h];
#> vector[estimate_r > 0 ? 0: ot_h] gen_R;
#> real r[ot_h];
#> vector[return_likelihood > 1 ? ot : 0] log_lik;
#> if (estimate_r){
#> // estimate growth from estimated Rt
#> real set_gt_mean = (gt_mean_sd > 0 ? gt_mean[1] : gt_mean_mean);
#> real set_gt_sd = (gt_sd_sd > 0 ? gt_sd[1] : gt_sd_mean);
#> r = R_to_growth(R, set_gt_mean, set_gt_sd);
#> }else{
#> // sample generation time
#> real gt_mean_sample = (gt_mean_sd > 0 ? normal_rng(gt_mean_mean, gt_mean_sd) : gt_mean_mean);
#> real gt_sd_sample = (gt_sd_sd > 0 ? normal_rng(gt_sd_mean, gt_sd_sd) : gt_sd_mean);
#> // calculate Rt using infections and generation time
#> gen_R = calculate_Rt(infections, seeding_time, gt_mean_sample, gt_sd_sample,
#> max_gt, rt_half_window);
#> // estimate growth from calculated Rt
#> r = R_to_growth(gen_R, gt_mean_sample, gt_sd_sample);
#> }
#> // simulate reported cases
#> imputed_reports = report_rng(reports, rep_phi, model_type);
#> // log likelihood of model
#> if (return_likelihood) {
#> log_lik = report_log_lik(cases, obs_reports, rep_phi, model_type,
#> obs_weight);
#> }
#> }
#>
#> $method
#> [1] "sampling"
#>
#> $cores
#> [1] 1
#>
#> $warmup
#> [1] 1000
#>
#> $chains
#> [1] 4
#>
#> $save_warmup
#> [1] FALSE
#>
#> $seed
#> [1] 9246620
#>
#> $future
#> [1] FALSE
#>
#> $max_execution_time
#> [1] Inf
#>
#> $control
#> $control$adapt_delta
#> [1] 0.95
#>
#> $control$max_treedepth
#> [1] 15
#>
#>
#> $iter
#> [1] 1500
#>