EpiNow2 Stan Functions
Loading...
Searching...
No Matches
delays.stan
Go to the documentation of this file.
1/**
2 * Delay Distribution Functions
3 *
4 * This group of functions handles the creation, manipulation, and application
5 * of delay distributions in the model. Delay distributions represent the time
6 * between events (e.g., infection to symptom onset, symptom onset to reporting).
7 *
8 */
9
10/**
11 * Get the maximum delay for each delay type
12 *
13 * @param delay_types Number of delay types
14 * @param delay_types_p Array indicating whether each delay is parametric (1) or non-parametric (0)
15 * @param delay_types_id Array mapping delay types to their respective IDs
16 * @param delay_types_groups Array of indices defining groups of delay types
17 * @param delay_max Array of maximum delays for parametric distributions
18 * @param delay_np_pmf_groups Array of indices for accessing non-parametric PMFs
19 * @return An array of maximum delays for each delay type
20 *
21 * @ingroup delay_handlers
22 */
24 int delay_types, array[] int delay_types_p, array[] int delay_types_id,
25 array[] int delay_types_groups, array[] int delay_max,
26 array[] int delay_np_pmf_groups
27) {
28 array[delay_types] int ret;
29 for (i in 1:delay_types) {
30 ret[i] = 0;
31 for (j in delay_types_groups[i]:(delay_types_groups[i + 1] - 1)) {
32 if (delay_types_p[j]) { // parametric
33 ret[i] += delay_max[delay_types_id[j]];
34 } else { // nonparametric
35 ret[i] += delay_np_pmf_groups[delay_types_id[j] + 1] -
36 delay_np_pmf_groups[delay_types_id[j]] - 1;
37 }
38 }
39 }
40 return ret;
41}
42
43/**
44 * Get the reversed probability mass function for a delay
45 *
46 * @param delay_id Identifier for the specific delay distribution
47 * @param len Length of the output PMF
48 * @param delay_types_p Array indicating whether each delay is parametric (1) or non-parametric (0)
49 * @param delay_types_id Array mapping delay types to their respective IDs
50 * @param delay_types_groups Array of indices defining groups of delay types
51 * @param delay_max Array of maximum delays for parametric distributions
52 * @param delay_np_pmf Vector of probability mass functions for non-parametric delays
53 * @param delay_np_pmf_groups Array of indices for accessing non-parametric PMFs
54 * @param delay_params Vector of parameters for parametric delay distributions
55 * @param delay_params_groups Array of indices for accessing delay parameters
56 * @param delay_dist Array of distribution types (0: lognormal, 1: gamma)
57 * @param left_truncate Whether to left-truncate the PMF (1) or not (0)
58 * @param reverse_pmf Whether to reverse the PMF (1) or not (0)
59 * @param cumulative Whether to return cumulative (1) or daily (0) values
60 * @return A vector containing the (reversed) PMF of length len
61 *
62 * @ingroup delay_handlers
63 */
65 int delay_id, int len, array[] int delay_types_p, array[] int delay_types_id,
66 array[] int delay_types_groups, array[] int delay_max,
67 vector delay_np_pmf, array[] int delay_np_pmf_groups,
68 vector delay_params, array[] int delay_params_groups, array[] int delay_dist,
69 int left_truncate, int reverse_pmf, int cumulative
70) {
71 // loop over delays
72 vector[len] pmf = rep_vector(0, len);
73 int current_len = 1;
74 int new_len;
75 for (i in
76 delay_types_groups[delay_id]:(delay_types_groups[delay_id + 1] - 1)) {
77 if (delay_types_p[i]) { // parametric
78 int start = delay_params_groups[delay_types_id[i]];
79 int end = delay_params_groups[delay_types_id[i] + 1] - 1;
80 vector[delay_max[delay_types_id[i]] + 1] new_variable_pmf =
82 delay_params[start:end],
83 delay_max[delay_types_id[i]] + 1,
84 delay_dist[delay_types_id[i]]
85 );
86 new_len = current_len + delay_max[delay_types_id[i]];
87 if (current_len == 1) { // first delay
88 pmf[1:new_len] = new_variable_pmf;
89 } else { // subsequent delay to be convolved
90 pmf[1:new_len] = convolve_with_rev_pmf(
91 pmf[1:current_len], reverse(new_variable_pmf), new_len
92 );
93 }
94 } else { // nonparametric
95 int start = delay_np_pmf_groups[delay_types_id[i]];
96 int end = delay_np_pmf_groups[delay_types_id[i] + 1] - 1;
97 new_len = current_len + end - start;
98 if (current_len == 1) { // first delay
99 pmf[1:new_len] = delay_np_pmf[start:end];
100 } else { // subsequent delay to be convolved
101 pmf[1:new_len] = convolve_with_rev_pmf(
102 pmf[1:current_len], reverse(delay_np_pmf[start:end]), new_len
103 );
104 }
105 }
106 current_len = new_len;
107 }
108 if (left_truncate) {
109 pmf = append_row(
110 rep_vector(0, left_truncate),
111 pmf[(left_truncate + 1):len] / sum(pmf[(left_truncate + 1):len])
112 );
113 }
114 if (cumulative) {
115 pmf = cumulative_sum(pmf);
116 }
117 if (reverse_pmf) {
118 pmf = reverse(pmf);
119 }
120 return pmf;
121}
122
123/**
124 * Update log density for delay distribution priors
125 *
126 * @param delay_params Vector of parameters for parametric delay distributions
127 * @param delay_params_mean Vector of prior means for delay parameters
128 * @param delay_params_sd Vector of prior standard deviations for delay parameters
129 * @param delay_params_groups Array of indices for accessing delay parameters
130 * @param delay_dist Array of distribution types (0: lognormal, 1: gamma)
131 * @param weight Array of weights for each delay distribution in the log density
132 *
133 * @ingroup delay_handlers
134 */
135void delays_lp(vector delay_params,
136 vector delay_params_mean, vector delay_params_sd,
137 array[] int delay_params_groups,
138 array[] int delay_dist, array[] int weight) {
139 int n_delays = num_elements(delay_params_groups) - 1;
140 if (n_delays == 0) {
141 return;
142 }
143 for (d in 1:n_delays) {
144 int start = delay_params_groups[d];
145 int end = delay_params_groups[d + 1] - 1;
146 for (s in start:end) {
147 if (delay_params_sd[s] > 0) {
148 if (weight[d] > 1) {
149 target += weight[d] *
150 normal_lpdf(
151 delay_params[s] | delay_params_mean[s], delay_params_sd[s]
152 );
153 } else {
154 delay_params[s] ~ normal(delay_params_mean[s], delay_params_sd[s]);
155 }
156 }
157 }
158 }
159}
160
161/**
162 * Generate random samples from a normal distribution with lower bounds
163 *
164 * @param mu Vector of means
165 * @param sigma Vector of standard deviations
166 * @param lb Vector of lower bounds
167 * @return A vector of random samples from the truncated normal distribution
168 *
169 * @ingroup delay_handlers
170 */
171vector normal_lb_rng(vector mu, vector sigma, vector lb) {
172 int len = num_elements(mu);
173 vector[len] ret;
174 for (i in 1:len) {
175 real p = normal_cdf(lb[i] | mu[i], sigma[i]); // cdf for bounds
176 real u = uniform_rng(p, 1);
177 ret[i] = (sigma[i] * inv_Phi(u)) + mu[i]; // inverse cdf for value
178 }
179 return ret;
180}
vector convolve_with_rev_pmf(vector x, vector y, int len)
Definition convolve.stan:62
array[] int get_delay_type_max(int delay_types, array[] int delay_types_p, array[] int delay_types_id, array[] int delay_types_groups, array[] int delay_max, array[] int delay_np_pmf_groups)
Definition delays.stan:23
void delays_lp(vector delay_params, vector delay_params_mean, vector delay_params_sd, array[] int delay_params_groups, array[] int delay_dist, array[] int weight)
Definition delays.stan:135
vector normal_lb_rng(vector mu, vector sigma, vector lb)
Definition delays.stan:171
vector get_delay_rev_pmf(int delay_id, int len, array[] int delay_types_p, array[] int delay_types_id, array[] int delay_types_groups, array[] int delay_max, vector delay_np_pmf, array[] int delay_np_pmf_groups, vector delay_params, array[] int delay_params_groups, array[] int delay_dist, int left_truncate, int reverse_pmf, int cumulative)
Definition delays.stan:64
vector discretised_pmf(vector params, int n, int dist)
Definition pmfs.stan:26