EpiNow2 Stan Functions
Loading...
Searching...
No Matches
gaussian_process.stan
Go to the documentation of this file.
1/**
2 * These functions implement approximate Gaussian processes for Stan using
3 * Hilbert space methods. The functions are based on the following:
4 * - https://avehtari.github.io/casestudies/Motorcycle/motorcycle_gpcourse.html (Section 4)
5 * - https://doi.org/10.1007/s11222-022-10167-2
6 */
7
8/**
9 * Spectral density for Exponentiated Quadratic kernel
10 *
11 * @param alpha Scaling parameter
12 * @param rho Length scale parameter
13 * @param L Length of the interval
14 * @param M Number of basis functions
15 * @return A vector of spectral densities
16 *
17 * @ingroup estimates_smoothing
18 */
19vector diagSPD_EQ(real alpha, real rho, real L, int M) {
20 vector[M] indices = linspaced_vector(M, 1, M);
21 real factor = alpha * sqrt(sqrt(2 * pi()) * rho);
22 real exponent = -0.25 * (rho * pi() / 2 / L)^2;
23 return factor * exp(exponent * square(indices));
24}
25
26/**
27 * Spectral density for 1/2 Matern (Ornstein-Uhlenbeck) kernel
28 *
29 * @param alpha Scaling parameter
30 * @param rho Length scale parameter
31 * @param L Length of the interval
32 * @param M Number of basis functions
33 * @return A vector of spectral densities
34 *
35 * @ingroup estimates_smoothing
36 */
37vector diagSPD_Matern12(real alpha, real rho, real L, int M) {
38 vector[M] indices = linspaced_vector(M, 1, M);
39 real factor = 2;
40 vector[M] denom = rho * ((1 / rho)^2 + pow(pi() / 2 / L * indices, 2));
41 return alpha * sqrt(factor * inv(denom));
42}
43
44/**
45 * Spectral density for 3/2 Matern kernel
46 *
47 * @param alpha Scaling parameter
48 * @param rho Length scale parameter
49 * @param L Length of the interval
50 * @param M Number of basis functions
51 * @return A vector of spectral densities
52 *
53 * @ingroup estimates_smoothing
54 */
55vector diagSPD_Matern32(real alpha, real rho, real L, int M) {
56 vector[M] indices = linspaced_vector(M, 1, M);
57 real factor = 2 * alpha * pow(sqrt(3) / rho, 1.5);
58 vector[M] denom = (sqrt(3) / rho)^2 + pow((pi() / 2 / L) * indices, 2);
59 return factor * inv(denom);
60}
61
62/**
63 * Spectral density for 5/2 Matern kernel
64 *
65 * @param alpha Scaling parameter
66 * @param rho Length scale parameter
67 * @param L Length of the interval
68 * @param M Number of basis functions
69 * @return A vector of spectral densities
70 *
71 * @ingroup estimates_smoothing
72 */
73vector diagSPD_Matern52(real alpha, real rho, real L, int M) {
74 vector[M] indices = linspaced_vector(M, 1, M);
75 real factor = 3 * pow(sqrt(5) / rho, 5);
76 vector[M] denom =
77 2 * pow((sqrt(5) / rho)^2 + pow((pi() / 2 / L) * indices, 2), 3);
78 return alpha * sqrt(factor * inv(denom));
79}
80
81/**
82 * Spectral density for periodic kernel
83 *
84 * @param alpha Scaling parameter
85 * @param rho Length scale parameter
86 * @param M Number of basis functions
87 * @return A vector of spectral densities
88 *
89 * @ingroup estimates_smoothing
90 */
91vector diagSPD_Periodic(real alpha, real rho, int M) {
92 real a = inv_square(rho);
93 vector[M] indices = linspaced_vector(M, 1, M);
94 vector[M] q = exp(
95 log(alpha) + 0.5 *
96 (log(2) - a + to_vector(log_modified_bessel_first_kind(indices, a)))
97 );
98 return append_row(q, q);
99}
100
101/**
102 * Basis functions for Gaussian Process
103 *
104 * @param N Number of data points
105 * @param M Number of basis functions
106 * @param L Length of the interval
107 * @param x Vector of input data
108 * @return A matrix of basis functions
109 *
110 * @ingroup estimates_smoothing
111 */
112matrix PHI(int N, int M, real L, vector x) {
113 matrix[N, M] phi = sin(
114 diag_post_multiply(
115 rep_matrix(pi() / (2 * L) * (x + L), M), linspaced_vector(M, 1, M)
116 )
117 ) / sqrt(L);
118 return phi;
119}
120
121/**
122 * Basis functions for periodic Gaussian Process
123 *
124 * @param N Number of data points
125 * @param M Number of basis functions
126 * @param w0 Fundamental frequency
127 * @param x Vector of input data
128 * @return A matrix of basis functions
129 *
130 * @ingroup estimates_smoothing
131 */
132matrix PHI_periodic(int N, int M, real w0, vector x) {
133 matrix[N, M] mw0x = diag_post_multiply(
134 rep_matrix(w0 * x, M), linspaced_vector(M, 1, M)
135 );
136 return append_col(cos(mw0x), sin(mw0x));
137}
138
139/**
140 * Setup Gaussian process noise dimensions
141 *
142 * @param ot_h Observation time horizon
143 * @param t Total time points
144 * @param horizon Forecast horizon
145 * @param estimate_r Indicator if estimating r
146 * @param stationary Indicator if stationary
147 * @param future_fixed Indicator if future is fixed
148 * @param fixed_from Fixed point from
149 * @return Number of noise terms
150 *
151 * @ingroup estimates_smoothing
152 */
153int setup_noise(int ot_h, int t, int horizon, int estimate_r,
154 int stationary, int future_fixed, int fixed_from) {
155 int noise_time = estimate_r > 0 ? (stationary > 0 ? ot_h : ot_h - 1) : t;
156 int noise_terms =
157 future_fixed > 0 ? (noise_time - horizon + fixed_from) : noise_time;
158 return noise_terms;
159}
160
161/**
162 * Setup approximate Gaussian process
163 *
164 * @param M Number of basis functions
165 * @param L Length of the interval
166 * @param dimension Dimension of the process
167 * @param is_periodic Indicator if the process is periodic
168 * @param w0 Fundamental frequency for periodic process
169 * @return A matrix of basis functions
170 *
171 * @ingroup estimates_smoothing
172 */
173matrix setup_gp(int M, real L, int dimension, int is_periodic, real w0) {
174 vector[dimension] x = linspaced_vector(dimension, 1, dimension);
175 x = 2 * (x - mean(x)) / (max(x) - 1);
176 if (is_periodic) {
177 return PHI_periodic(dimension, M, w0, x);
178 } else {
179 return PHI(dimension, M, L, x);
180 }
181}
182
183/**
184 * Update Gaussian process using spectral densities
185 *
186 * @param PHI Basis functions matrix
187 * @param M Number of basis functions
188 * @param L Length of the interval
189 * @param alpha Scaling parameter
190 * @param rho Length scale parameter
191 * @param eta Vector of noise terms
192 * @param type Type of kernel (0: SE, 1: Periodic, 2: Matern)
193 * @param nu Smoothness parameter for Matern kernel
194 * @return A vector of updated noise terms
195 */
196vector update_gp(matrix PHI, int M, real L, real alpha,
197 real rho, vector eta, int type, real nu) {
198 vector[type == 1 ? 2 * M : M] diagSPD; // spectral density
199
200 // GP in noise - spectral densities
201 if (type == 0) {
202 diagSPD = diagSPD_EQ(alpha, rho, L, M);
203 } else if (type == 1) {
204 diagSPD = diagSPD_Periodic(alpha, rho, M);
205 } else if (type == 2) {
206 if (nu == 0.5) {
207 diagSPD = diagSPD_Matern12(alpha, rho, L, M);
208 } else if (nu == 1.5) {
209 diagSPD = diagSPD_Matern32(alpha, rho, L, M);
210 } else if (nu == 2.5) {
211 diagSPD = diagSPD_Matern52(alpha, rho, L, M);
212 } else {
213 reject("nu must be one of 1/2, 3/2 or 5/2; found nu=", nu);
214 }
215 }
216 return PHI * (diagSPD .* eta);
217}
218
219/**
220 * Priors for Gaussian process (excluding length scale)
221 *
222 * @param eta Vector of noise terms
223 *
224 * @ingroup estimates_smoothing
225 */
226void gaussian_process_lp(vector eta) {
227 eta ~ std_normal();
228}
229
vector update_gp(matrix PHI, int M, real L, real alpha, real rho, vector eta, int type, real nu)
matrix PHI_periodic(int N, int M, real w0, vector x)
vector diagSPD_EQ(real alpha, real rho, real L, int M)
vector diagSPD_Periodic(real alpha, real rho, int M)
vector diagSPD_Matern12(real alpha, real rho, real L, int M)
int setup_noise(int ot_h, int t, int horizon, int estimate_r, int stationary, int future_fixed, int fixed_from)
matrix setup_gp(int M, real L, int dimension, int is_periodic, real w0)
matrix PHI(int N, int M, real L, vector x)
vector diagSPD_Matern52(real alpha, real rho, real L, int M)
vector diagSPD_Matern32(real alpha, real rho, real L, int M)
void gaussian_process_lp(vector eta)