EpiNow2 Stan Functions
Loading...
Searching...
No Matches

Functions for smoothing estimates using Gaussian processes. More...

+ Collaboration diagram for Estimates Smoothing:

Functions

vector diagSPD_EQ (real alpha, real rho, real L, int M)
 
vector diagSPD_Matern12 (real alpha, real rho, real L, int M)
 
vector diagSPD_Matern32 (real alpha, real rho, real L, int M)
 
vector diagSPD_Matern52 (real alpha, real rho, real L, int M)
 
vector diagSPD_Periodic (real alpha, real rho, int M)
 
void gaussian_process_lp (vector eta)
 
matrix PHI (int N, int M, real L, vector x)
 
matrix PHI_periodic (int N, int M, real w0, vector x)
 
matrix setup_gp (int M, real L, int dimension, int is_periodic, real w0)
 
int setup_noise (int ot_h, int t, int horizon, int estimate_r, int stationary, int future_fixed, int fixed_from)
 

Description

Functions for smoothing estimates using Gaussian processes.

Functions from gaussian_process.stan for implementing approximate Gaussian processes using Hilbert space methods to smooth infection and Rt trajectories.

Function Documentation

◆ diagSPD_EQ()

vector diagSPD_EQ ( real alpha,
real rho,
real L,
int M )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

These functions implement approximate Gaussian processes for Stan using Hilbert space methods. The functions are based on the following:

Parameters
alphaScaling parameter
rhoLength scale parameter
LLength of the interval
MNumber of basis functions
Returns
A vector of spectral densities

Definition at line 19 of file gaussian_process.stan.

19 {
20 vector[M] indices = linspaced_vector(M, 1, M);
21 real factor = alpha * sqrt(sqrt(2 * pi()) * rho);
22 real exponent = -0.25 * (rho * pi() / 2 / L)^2;
23 return factor * exp(exponent * square(indices));
24}

Referenced by update_gp().

+ Here is the caller graph for this function:

◆ diagSPD_Matern12()

vector diagSPD_Matern12 ( real alpha,
real rho,
real L,
int M )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Spectral density for 1/2 Matern (Ornstein-Uhlenbeck) kernel

Parameters
alphaScaling parameter
rhoLength scale parameter
LLength of the interval
MNumber of basis functions
Returns
A vector of spectral densities

Definition at line 37 of file gaussian_process.stan.

37 {
38 vector[M] indices = linspaced_vector(M, 1, M);
39 real factor = 2;
40 vector[M] denom = rho * ((1 / rho)^2 + pow(pi() / 2 / L * indices, 2));
41 return alpha * sqrt(factor * inv(denom));
42}

Referenced by update_gp().

+ Here is the caller graph for this function:

◆ diagSPD_Matern32()

vector diagSPD_Matern32 ( real alpha,
real rho,
real L,
int M )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Spectral density for 3/2 Matern kernel

Parameters
alphaScaling parameter
rhoLength scale parameter
LLength of the interval
MNumber of basis functions
Returns
A vector of spectral densities

Definition at line 55 of file gaussian_process.stan.

55 {
56 vector[M] indices = linspaced_vector(M, 1, M);
57 real factor = 2 * alpha * pow(sqrt(3) / rho, 1.5);
58 vector[M] denom = (sqrt(3) / rho)^2 + pow((pi() / 2 / L) * indices, 2);
59 return factor * inv(denom);
60}

Referenced by update_gp().

+ Here is the caller graph for this function:

◆ diagSPD_Matern52()

vector diagSPD_Matern52 ( real alpha,
real rho,
real L,
int M )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Spectral density for 5/2 Matern kernel

Parameters
alphaScaling parameter
rhoLength scale parameter
LLength of the interval
MNumber of basis functions
Returns
A vector of spectral densities

Definition at line 73 of file gaussian_process.stan.

73 {
74 vector[M] indices = linspaced_vector(M, 1, M);
75 real factor = 3 * pow(sqrt(5) / rho, 5);
76 vector[M] denom =
77 2 * pow((sqrt(5) / rho)^2 + pow((pi() / 2 / L) * indices, 2), 3);
78 return alpha * sqrt(factor * inv(denom));
79}

Referenced by update_gp().

+ Here is the caller graph for this function:

◆ diagSPD_Periodic()

vector diagSPD_Periodic ( real alpha,
real rho,
int M )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Spectral density for periodic kernel

Parameters
alphaScaling parameter
rhoLength scale parameter
MNumber of basis functions
Returns
A vector of spectral densities

Definition at line 91 of file gaussian_process.stan.

91 {
92 real a = inv_square(rho);
93 vector[M] indices = linspaced_vector(M, 1, M);
94 vector[M] q = exp(
95 log(alpha) + 0.5 *
96 (log(2) - a + to_vector(log_modified_bessel_first_kind(indices, a)))
97 );
98 return append_row(q, q);
99}

Referenced by update_gp().

+ Here is the caller graph for this function:

◆ gaussian_process_lp()

void gaussian_process_lp ( vector eta)

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Priors for Gaussian process (excluding length scale)

Parameters
etaVector of noise terms

Definition at line 226 of file gaussian_process.stan.

226 {
227 eta ~ std_normal();
228}

◆ PHI()

matrix PHI ( int N,
int M,
real L,
vector x )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Basis functions for Gaussian Process

Parameters
NNumber of data points
MNumber of basis functions
LLength of the interval
xVector of input data
Returns
A matrix of basis functions

Definition at line 112 of file gaussian_process.stan.

112 {
113 matrix[N, M] phi = sin(
114 diag_post_multiply(
115 rep_matrix(pi() / (2 * L) * (x + L), M), linspaced_vector(M, 1, M)
116 )
117 ) / sqrt(L);
118 return phi;
119}

Referenced by setup_gp(), and update_gp().

+ Here is the caller graph for this function:

◆ PHI_periodic()

matrix PHI_periodic ( int N,
int M,
real w0,
vector x )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Basis functions for periodic Gaussian Process

Parameters
NNumber of data points
MNumber of basis functions
w0Fundamental frequency
xVector of input data
Returns
A matrix of basis functions

Definition at line 132 of file gaussian_process.stan.

132 {
133 matrix[N, M] mw0x = diag_post_multiply(
134 rep_matrix(w0 * x, M), linspaced_vector(M, 1, M)
135 );
136 return append_col(cos(mw0x), sin(mw0x));
137}

Referenced by setup_gp().

+ Here is the caller graph for this function:

◆ setup_gp()

matrix setup_gp ( int M,
real L,
int dimension,
int is_periodic,
real w0 )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Setup approximate Gaussian process

Parameters
MNumber of basis functions
LLength of the interval
dimensionDimension of the process
is_periodicIndicator if the process is periodic
w0Fundamental frequency for periodic process
Returns
A matrix of basis functions

Definition at line 173 of file gaussian_process.stan.

173 {
174 vector[dimension] x = linspaced_vector(dimension, 1, dimension);
175 x = 2 * (x - mean(x)) / (max(x) - 1);
176 if (is_periodic) {
177 return PHI_periodic(dimension, M, w0, x);
178 } else {
179 return PHI(dimension, M, L, x);
180 }
181}
matrix PHI_periodic(int N, int M, real w0, vector x)
matrix PHI(int N, int M, real L, vector x)

References PHI(), and PHI_periodic().

+ Here is the call graph for this function:

◆ setup_noise()

int setup_noise ( int ot_h,
int t,
int horizon,
int estimate_r,
int stationary,
int future_fixed,
int fixed_from )

#include </github/workspace/inst/stan/functions/gaussian_process.stan>

Setup Gaussian process noise dimensions

Parameters
ot_hObservation time horizon
tTotal time points
horizonForecast horizon
estimate_rIndicator if estimating r
stationaryIndicator if stationary
future_fixedIndicator if future is fixed
fixed_fromFixed point from
Returns
Number of noise terms

Definition at line 153 of file gaussian_process.stan.

154 {
155 int noise_time = estimate_r > 0 ? (stationary > 0 ? ot_h : ot_h - 1) : t;
156 int noise_terms =
157 future_fixed > 0 ? (noise_time - horizon + fixed_from) : noise_time;
158 return noise_terms;
159}