EpiNow2 Stan Functions
Loading...
Searching...
No Matches
rt.stan
Go to the documentation of this file.
1/**
2 * Reproduction Number (Rt) Functions
3 *
4 * This group of functions handles the calculation, updating, and conversion of
5 * reproduction numbers in the model. The reproduction number represents the average
6 * number of secondary infections caused by a single infected individual.
7 *
8 * @ingroup rt_estimation
9 */
10
11/**
12 * @ingroup rt_estimation
13 * @brief Update a vector of effective reproduction numbers (Rt) based on
14 * an intercept, breakpoints (i.e. a random walk), and a Gaussian
15 * process.
16 *
17 * @param t Length of the time series
18 * @param R0 Initial reproduction number
19 * @param noise Vector of Gaussian process noise values
20 * @param bps Array of breakpoint indices
21 * @param bp_effects Vector of breakpoint effects
22 * @param stationary Whether the Gaussian process is stationary (1) or non-stationary (0)
23 * @return A vector of length t containing the updated Rt values
24 */
25vector update_Rt(int t, real R0, vector noise, array[] int bps,
26 vector bp_effects, int stationary) {
27 // define control parameters
28 int bp_n = num_elements(bp_effects);
29 int gp_n = num_elements(noise);
30 // initialise intercept
31 vector[t] logR = rep_vector(log(R0), t);
32 //initialise breakpoints + rw
33 if (bp_n) {
34 vector[bp_n + 1] bp0;
35 bp0[1] = 0;
36 bp0[2:(bp_n + 1)] = cumulative_sum(bp_effects);
37 logR = logR + bp0[bps];
38 }
39 //initialise gaussian process
40 if (gp_n) {
41 vector[t] gp = rep_vector(0, t);
42 if (stationary) {
43 gp[1:gp_n] = noise;
44 // fix future gp based on last estimated
45 if (t > gp_n) {
46 gp[(gp_n + 1):t] = rep_vector(noise[gp_n], t - gp_n);
47 }
48 } else {
49 gp[2:(gp_n + 1)] = noise;
50 gp = cumulative_sum(gp);
51 }
52 logR = logR + gp;
53 }
54
55 return exp(logR);
56}
57
58/**
59 * Calculate the log-probability of the reproduction number (Rt) priors
60 *
61 * This function adds the log density contributions from priors on initial infections
62 * and breakpoint effects to the target.
63 *
64 * @param initial_infections_scale Array of initial infection values
65 * @param bp_effects Vector of breakpoint effects
66 * @param bp_sd Array of breakpoint standard deviations
67 * @param bp_n Number of breakpoints
68 * @param cases Array of observed case counts
69 * @param initial_infections_guess Initial guess for infections based on cases
70 *
71 * @ingroup rt_estimation
72 */
73void rt_lp(array[] real initial_infections_scale, vector bp_effects,
74 array[] real bp_sd, int bp_n, array[] int cases,
75 real initial_infections_guess) {
76 //breakpoint effects on Rt
77 if (bp_n > 0) {
78 bp_sd[1] ~ normal(0, 0.1) T[0,];
79 bp_effects ~ normal(0, bp_sd[1]);
80 }
81 initial_infections_scale ~ normal(initial_infections_guess, 2);
82}
83
84/**
85 * Helper function for calculating r from R using Newton's method
86 *
87 * This function performs a single Newton step in the iterative calculation
88 * of the growth rate r from the reproduction number R.
89 *
90 * Code is based on Julia code from
91 * https://github.com/CDCgov/Rt-without-renewal/blob/d6344cc6e451e3e6c4188e4984247f890ae60795/EpiAware/test/predictive_checking/fast_approx_for_r.jl
92 * under Apache license 2.0.
93 *
94 * @param R Reproduction number
95 * @param r Current estimate of the growth rate
96 * @param pmf Generation time probability mass function (first index: 0)
97 * @return The Newton step for updating r
98 *
99 * @ingroup rt_estimation
100 */
101real R_to_r_newton_step(real R, real r, vector pmf) {
102 int len = num_elements(pmf);
103 vector[len] zero_series = linspaced_vector(len, 0, len - 1);
104 vector[len] exp_r = exp(-r * zero_series);
105 real ret = (R * dot_product(pmf, exp_r) - 1) /
106 (- R * dot_product(pmf .* zero_series, exp_r));
107 return(ret);
108}
109
110/**
111 * Estimate the growth rate r from reproduction number R
112 *
113 * This function uses the Newton method to solve for the growth rate r
114 * that corresponds to a given reproduction number R, using the generation
115 * time distribution.
116 *
117 * Code is based on Julia code from
118 * https://github.com/CDCgov/Rt-without-renewal/blob/d6344cc6e451e3e6c4188e4984247f890ae60795/EpiAware/test/predictive_checking/fast_approx_for_r.jl
119 * under Apache license 2.0.
120 *
121 * @param R Reproduction number
122 * @param gt_rev_pmf Reversed probability mass function of the generation time
123 * @param abs_tol Absolute tolerance for the Newton solver
124 * @return The estimated growth rate r
125 *
126 * @ingroup rt_estimation
127 */
128real R_to_r(real R, vector gt_rev_pmf, real abs_tol) {
129 int gt_len = num_elements(gt_rev_pmf);
130 vector[gt_len] gt_pmf = reverse(gt_rev_pmf);
131 real mean_gt = dot_product(gt_pmf, linspaced_vector(gt_len, 0, gt_len - 1));
132 real r = fmax((R - 1) / (R * mean_gt), -1);
133 real step = abs_tol + 1;
134 while (abs(step) > abs_tol) {
135 step = R_to_r_newton_step(R, r, gt_pmf);
136 r -= step;
137 }
138
139 return(r);
140}
vector update_Rt(int t, real R0, vector noise, array[] int bps, vector bp_effects, int stationary)
Update a vector of effective reproduction numbers (Rt) based on an intercept, breakpoints (i....
Definition rt.stan:25
real R_to_r_newton_step(real R, real r, vector pmf)
Definition rt.stan:101
real R_to_r(real R, vector gt_rev_pmf, real abs_tol)
Definition rt.stan:128
void rt_lp(array[] real initial_infections_scale, vector bp_effects, array[] real bp_sd, int bp_n, array[] int cases, real initial_infections_guess)
Definition rt.stan:73