Calculate the correlation between different metrics for a data.frame of
scores as produced by score()
.
Usage
get_correlations(scores, metrics = get_metrics.scores(scores), ...)
Value
An object of class scores
(a data.table with an additional
attribute metrics
holding the names of the scores) with correlations
between different metrics
Examples
library(magrittr) # pipe operator
scores <- example_quantile %>%
as_forecast_quantile() %>%
score()
#> ℹ Some rows containing NA values may be removed. This is fine if not
#> unexpected.
get_correlations(scores)
#> wis overprediction underprediction dispersion bias
#> <num> <num> <num> <num> <num>
#> 1: 1.0000000 0.94297565 0.28377361 0.45566303 0.10545891
#> 2: 0.9429757 1.00000000 -0.03310356 0.32493799 0.21532161
#> 3: 0.2837736 -0.03310356 1.00000000 0.14580143 -0.35123801
#> 4: 0.4556630 0.32493799 0.14580143 1.00000000 0.11118365
#> 5: 0.1054589 0.21532161 -0.35123801 0.11118365 1.00000000
#> 6: -0.2076649 -0.14556039 -0.21392764 -0.09400664 0.01338140
#> 7: -0.4075613 -0.31824017 -0.35756699 -0.08614678 0.09802725
#> 8: 0.9886108 0.90326672 0.33589892 0.53809741 0.09578751
#> interval_coverage_50 interval_coverage_90 ae_median metric
#> <num> <num> <num> <char>
#> 1: -0.20766492 -0.40756133 0.98861080 wis
#> 2: -0.14556039 -0.31824017 0.90326672 overprediction
#> 3: -0.21392764 -0.35756699 0.33589892 underprediction
#> 4: -0.09400664 -0.08614678 0.53809741 dispersion
#> 5: 0.01338140 0.09802725 0.09578751 bias
#> 6: 1.00000000 0.37245118 -0.24559356 interval_coverage_50
#> 7: 0.37245118 1.00000000 -0.41079097 interval_coverage_90
#> 8: -0.24559356 -0.41079097 1.00000000 ae_median