
Package index
-
scoringutilsscoringutils-package - scoringutils: Utilities for Scoring and Assessing Predictions
-
example_binary - Binary forecast example data
-
example_multivariate_sample - Multivariate forecast example data
-
example_nominal - Nominal example data
-
example_ordinal - Ordinal example data
-
example_point - Point forecast example data
-
example_quantile - Quantile example data
-
example_sample_continuous - Continuous forecast example data
-
example_sample_discrete - Discrete forecast example data
-
as_forecast_binary() - Create a
forecastobject for binary forecasts
-
as_forecast_doc_template - General information on creating a
forecastobject
-
as_forecast_generic() - Common functionality for
as_forecast_<type>functions
-
as_forecast_multivariate_sample() - Create a
forecastobject for sample-based multivariate forecasts
-
as_forecast_nominal() - Create a
forecastobject for nominal forecasts
-
as_forecast_ordinal() - Create a
forecastobject for ordinal forecasts
-
as_forecast_point() - Create a
forecastobject for point forecasts
-
as_forecast_quantile() - Create a
forecastobject for quantile-based forecasts
-
as_forecast_sample() - Create a
forecastobject for sample-based forecasts
-
set_forecast_unit() - Set unit of a single forecast manually
-
assert_forecast() - Assert that input is a forecast object and passes validations
-
is_forecast_binary()is_forecast_sample_multivariate()is_forecast_nominal()is_forecast_ordinal()is_forecast_point()is_forecast_quantile()is_forecast_sample()is_forecast() - Test whether an object is a forecast object
-
get_forecast_counts() - Count number of available forecasts
-
print(<forecast>) - Print information about a forecast object
-
get_duplicate_forecasts() - Find duplicate forecasts
-
get_forecast_unit() - Get unit of a single forecast
-
get_grouping() - Get grouping for a multivariate forecast
-
as_forecast_binary() - Create a
forecastobject for binary forecasts
-
as_forecast_multivariate_sample() - Create a
forecastobject for sample-based multivariate forecasts
-
as_forecast_nominal() - Create a
forecastobject for nominal forecasts
-
as_forecast_ordinal() - Create a
forecastobject for ordinal forecasts
-
as_forecast_point() - Create a
forecastobject for point forecasts
-
as_forecast_quantile() - Create a
forecastobject for quantile-based forecasts
-
as_forecast_sample() - Create a
forecastobject for sample-based forecasts
-
log_shift() - Log transformation with an additive shift
-
transform_forecasts() - Transform forecasts and observed values
-
get_metrics() - Get metrics
-
get_metrics(<forecast_binary>) - Get default metrics for binary forecasts
-
get_metrics(<forecast_nominal>) - Get default metrics for nominal forecasts
-
get_metrics(<forecast_ordinal>) - Get default metrics for nominal forecasts
-
get_metrics(<forecast_point>) - Get default metrics for point forecasts
-
get_metrics(<forecast_quantile>) - Get default metrics for quantile-based forecasts
-
get_metrics(<forecast_sample>) - Get default metrics for sample-based forecasts
-
get_metrics(<forecast_sample_multivariate>) - Get default metrics for sample-based forecasts
-
get_metrics(<scores>) - Get names of the metrics that were used for scoring
-
select_metrics() - Select metrics from a list of functions
-
add_relative_skill() - Add relative skill scores based on pairwise comparisons
-
get_correlations() - Calculate correlation between metrics
-
get_coverage() - Get quantile and interval coverage values for quantile-based forecasts
-
get_pairwise_comparisons() - Obtain pairwise comparisons between models
-
get_pit_histogram() - Probability integral transformation histogram
-
score() - Evaluate forecasts
-
summarise_scores()summarize_scores() - Summarise scores as produced by
score()
-
ae_median_quantile() - Absolute error of the median (quantile-based version)
-
ae_median_sample() - Absolute error of the median (sample-based version)
-
bias_quantile() - Determines bias of quantile forecasts
-
bias_sample() - Determine bias of forecasts
-
crps_sample()dispersion_sample()overprediction_sample()underprediction_sample() - (Continuous) ranked probability score
-
dss_sample() - Dawid-Sebastiani score
-
interval_coverage() - Interval coverage (for quantile-based forecasts)
-
interval_score() - Interval score
-
logs_sample() - Logarithmic score (sample-based version)
-
mad_sample() - Determine dispersion of a probabilistic forecast
-
pit_histogram_sample() - Probability integral transformation for counts
-
quantile_score() - Quantile score
-
rps_ordinal() - Ranked Probability Score for ordinal outcomes
-
brier_score()logs_binary() - Metrics for binary outcomes
-
logs_categorical() - Log score for categorical outcomes
-
se_mean_sample() - Squared error of the mean (sample-based version)
-
wis()dispersion_quantile()overprediction_quantile()underprediction_quantile() - Weighted interval score (WIS)
-
plot_correlations() - Plot correlation between metrics
-
plot_forecast_counts() - Visualise the number of available forecasts
-
plot_heatmap() - Create a heatmap of a scoring metric
-
plot_interval_coverage() - Plot interval coverage
-
plot_pairwise_comparisons() - Plot heatmap of pairwise comparisons
-
plot_quantile_coverage() - Plot quantile coverage
-
plot_wis() - Plot contributions to the weighted interval score
-
theme_scoringutils() - Scoringutils ggplot2 theme
-
assert_dims_ok_point() - Assert Inputs Have Matching Dimensions
-
assert_forecast_generic() - Validation common to all forecast types
-
assert_forecast_type() - Assert that forecast type is as expected
-
assert_input_binary() - Assert that inputs are correct for binary forecast
-
assert_input_categorical() - Assert that inputs are correct for categorical forecasts
-
assert_input_interval() - Assert that inputs are correct for interval-based forecast
-
assert_input_multivariate_sample() - Assert that inputs are correct for sample-based forecast
-
assert_input_nominal() - Assert that inputs are correct for nominal forecasts
-
assert_input_ordinal() - Assert that inputs are correct for ordinal forecasts
-
assert_input_point() - Assert that inputs are correct for point forecast
-
assert_input_quantile() - Assert that inputs are correct for quantile-based forecast
-
assert_input_sample() - Assert that inputs are correct for sample-based forecast
-
check_columns_present() - Check column names are present in a data.frame
-
check_dims_ok_point() - Check Inputs Have Matching Dimensions
-
check_duplicates() - Check that there are no duplicate forecasts
-
check_input_binary() - Check that inputs are correct for binary forecast
-
check_input_interval() - Check that inputs are correct for interval-based forecast
-
check_input_point() - Check that inputs are correct for point forecast
-
check_input_quantile() - Check that inputs are correct for quantile-based forecast
-
check_input_sample() - Check that inputs are correct for sample-based forecast
-
check_number_per_forecast() - Check that all forecasts have the same number of rows
-
check_numeric_vector() - Check whether an input is an atomic vector of mode 'numeric'
-
check_try() - Helper function to convert assert statements into checks
-
energy_score_multivariate() - Energy score for multivariate forecasts
-
get_forecast_type() - Get forecast type from forecast object
-
get_type() - Get type of a vector or matrix of observed values or predictions
-
test_columns_not_present() - Test whether column names are NOT present in a data.frame
-
test_columns_present() - Test whether all column names are present in a data.frame
-
validate_metrics() - Validate metrics
-
apply_metrics() - Apply a list of functions to a data table of forecasts
-
as_scores() - Create an object of class
scoresfrom data
-
assert_scores() - Validate an object of class
scores
-
bias_quantile_single_vector() - Compute bias for a single vector of quantile predictions
-
clean_forecast() - Clean forecast object
-
compare_forecasts() - Compare a subset of common forecasts
-
document_assert_functions - Documentation template for assert functions
-
document_check_functions - Documentation template for check functions
-
document_test_functions - Documentation template for test functions
-
ensure_data.table() - Ensure that an object is a
data.table
-
forecast_types - Documentation template for forecast types
-
geometric_mean() - Calculate geometric mean
-
get_protected_columns() - Get protected columns from data
-
get_range_from_quantile() - Get interval range belonging to a quantile
-
illustration-input-metric-binary-point - Illustration of required inputs for binary and point forecasts
-
illustration-input-metric-nominal - Illustration of required inputs for nominal forecasts
-
illustration-input-metric-ordinal - Illustration of required inputs for ordinal forecasts
-
illustration-input-metric-quantile - Illustration of required inputs for quantile-based forecasts
-
illustration-input-metric-sample - Illustration of required inputs for sample-based forecasts
-
interpolate_median() - Helper function to interpolate the median prediction if it is not available
-
new_forecast() - Class constructor for
forecastobjects
-
new_scores() - Construct an object of class
scores
-
pairwise_comparison_one_group() - Do pairwise comparison for one set of forecasts
-
permutation_test() - Simple permutation test
-
quantile_to_interval()quantile_to_interval_dataframe()quantile_to_interval_numeric() - Transform from a quantile format to an interval format
-
run_safely() - Run a function safely
-
sample_to_interval_long() - Change data from a sample-based format to a long interval range format
-
scoringutilsscoringutils-package - scoringutils: Utilities for Scoring and Assessing Predictions
-
set_grouping() - Set grouping