Skip to contents

Package documentation

scoringutils scoringutils-package
scoringutils: Utilities for Scoring and Assessing Predictions

Functions to check and analyse inputs

avail_forecasts()
Display Number of Forecasts Available
check_forecasts()
Check forecasts
find_duplicates()
Find duplicate forecasts
log_shift()
Log transformation with an additive shift
print(<scoringutils_check>)
Print output from check_forecasts()
transform_forecasts()
Transform forecasts and observed values

Functions for convenient forecast evaluation

score()
Evaluate forecasts
add_coverage()
Add coverage of central prediction intervals
correlation()
Correlation Between Metrics
pairwise_comparison()
Do Pairwise Comparisons of Scores
pit()
Probability Integral Transformation (data.frame Format)
summarise_scores() summarize_scores()
Summarise scores as produced by score()

Lower-level scoring functions

abs_error()
Absolute Error
ae_median_quantile()
Absolute Error of the Median (Quantile-based Version)
ae_median_sample()
Absolute Error of the Median (Sample-based Version)
bias_quantile()
Determines Bias of Quantile Forecasts
bias_range()
Determines Bias of Quantile Forecasts based on the range of the prediction intervals
bias_sample()
Determines bias of forecasts
brier_score()
Brier Score
crps_sample()
Ranked Probability Score
dss_sample()
Dawid-Sebastiani Score
interval_score()
Interval Score
logs_binary()
Log Score for Binary outcomes
logs_sample()
Logarithmic score
mad_sample()
Determine dispersion of a probabilistic forecast
pit_sample()
Probability Integral Transformation (sample-based version)
quantile_score()
Quantile Score
se_mean_sample()
Squared Error of the Mean (Sample-based Version)
squared_error()
Squared Error

Data wrangling helpers

merge_pred_and_obs()
Merge Forecast Data And Observations
sample_to_quantile()
Change Data from a Sample Based Format to a Quantile Format
set_forecast_unit()
Set unit of a single forecast manually

Functions for plotting and data visualisation

plot_avail_forecasts()
Visualise Where Forecasts Are Available
plot_correlation()
Plot Correlation Between Metrics
plot_heatmap()
Create a Heatmap of a Scoring Metric
plot_interval_coverage()
Plot Interval Coverage
plot_pairwise_comparison()
Plot Heatmap of Pairwise Comparisons
plot_pit()
PIT Histogram
plot_predictions()
Plot Predictions vs True Values
plot_quantile_coverage()
Plot Quantile Coverage
plot_ranges()
Plot Metrics by Range of the Prediction Interval
plot_score_table()
Plot Coloured Score Table
plot_wis()
Plot Contributions to the Weighted Interval Score
make_NA() make_na()
Make Rows NA in Data for Plotting
theme_scoringutils()
Scoringutils ggplot2 theme

Internal functions

check_equal_length()
Check Length
check_metrics()
Check whether the desired metrics are available in scoringutils
check_not_null()
Check Variable is not NULL
check_predictions()
Check Prediction Input For Lower-level Scoring Functions
check_quantiles()
Check that quantiles are valid
check_summary_params()
Check input parameters for summarise_scores()
check_true_values()
Check Observed Value Input For Lower-level Scoring Functions
collapse_messages()
Collapse several messages to one
compare_two_models()
Compare Two Models Based on Subset of Common Forecasts
delete_columns()
Delete Columns From a Data.table
geom_mean_helper()
Calculate Geometric Mean
get_forecast_unit()
Get unit of a single forecast
get_prediction_type()
Get prediction type of a forecast
get_protected_columns()
Get protected columns from a data frame
get_target_type()
Get type of the target true values of a forecast
infer_rel_skill_metric()
Infer metric for pairwise comparisons
is_scoringutils_check()
Check whether object has been checked with check_forecasts()
pairwise_comparison_one_group()
Do Pairwise Comparison for one Set of Forecasts
permutation_test()
Simple permutation test
prediction_is_quantile()
Check if predictions are quantile forecasts
quantile_to_range_long()
Change Data from a Plain Quantile Format to a Long Range Format
range_long_to_quantile()
Change Data from a Range Format to a Quantile Format
sample_to_range_long()
Change Data from a Sample Based Format to a Long Interval Range Format
score_binary()
Evaluate forecasts in a Binary Format
score_quantile()
Evaluate forecasts in a Quantile-Based Format
score_sample()
Evaluate forecasts in a Sample-Based Format (Integer or Continuous)
scoringutils scoringutils-package
scoringutils: Utilities for Scoring and Assessing Predictions

Example data and information

example_binary
Binary Forecast Example Data
example_continuous
Continuous Forecast Example Data
example_integer
Integer Forecast Example Data
example_point
Point Forecast Example Data
example_quantile
Quantile Example Data
example_quantile_forecasts_only
Quantile Example Data - Forecasts only
example_truth_only
Truth data only
available_metrics()
Available metrics in scoringutils
metrics
Summary information for selected metrics